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Introduction

The empirical success of neural networks on various applications,
such as natural language processing, computer vision and
decision-making, has motivated significant research on theoretically
understanding why neural networks work so well in practice.
Question: Why over-parametrized neural networks trained with
gradient descent (GD) enjoy fast convergence even if their loss
landscape is non-convex?



Related work and their limitations

▶ neural tangent kernel: large width, large initialization

▶ mean-field analysis: infinitesimal stepsize, exponentially large
width w.r.t. time

▶ convergence of linear networks: infinitesimal stepsize, special
initialization(balanced, spectral)

This work: finite width, finite stepsize and general initialization
for linear networks



Problem setting in the square loss

▶ training data X ∈ Rn×d ,Y ∈ Rn×m.

▶ weight: W1 ∈ Rd×h,W2 ∈ Rh×m.

▶ loss function: L(t) = 1
2∥Y − XW1(t)W2(t)∥2F .

A more general setting,

min
W1,W2

L(W ),W = W1W2

where L(W ) satisfies K -smoothness and µ−PL condition w.r.t. W .



Notation

▶ product: W (t) = W1(t)W2(t)

▶ imbalance: D(t) = W1(t)
TW1(t)−W2(t)W2(t)

T

▶ condition number of data matrix: κ = λmax(XXT )
λmin(XXT )

▶ gradient w.r.t. W :∇ℓ(W )



Gradient flow and gradient descent

Gradient descent

W1(t + 1) = W1(t)− η∇W1L(t),

W2(t + 1) = W2(t)− η∇W2L(t),
(1)

Gradient flow(
Ẇ1

Ẇ2

)
= −

(
∇W1L(W1,W2)
∇W2L(W1,W2)

)
= −

(
∇ℓ(W )W⊤

2

W⊤
1 ∇ℓ(W )

)
, (2)

where ∇ℓ(W ) = ∇W L(W ).



Convergence under gradient flow

We define the following linear operator which is the gradient of
over-parametrized model

γ(∇ℓ(W );W1,W2) :=

(
∇ℓ(W )W⊤

2

W⊤
1 ∇ℓ(W )

)
, (3)

Using γ, one can show that the evolution of loss under GF is

L̇(W1,W2) =

〈
∂L

∂W1
(W1,W2), Ẇ1

〉
+

〈
∂L

∂W2
(W1,W2), Ẇ2

〉
= − ⟨γ(∇ℓ(W );W1,W2), γ(∇ℓ(W );W1,W2)⟩
= −⟨∇ℓ(W ), γ∗ ◦ γ(∇ℓ(W );W1,W2)⟩ ,

(4)



Convergence under gradient flow

Therefore, the dynamics of loss are defined by the following
positive semi-definite Hermitian linear operator on ∇ℓ(W ):

τ(∇ℓ(W );W1,W2) := γ∗ ◦ γ(∇ℓ(W );W1,W2) (5)

=∇ℓ(W ) W⊤
2 W2 +W1W

⊤
1 ∇ℓ(W ).

Then, from equation 4 and the min-max principle of Hermitian
operators, we have

L̇(t) = −⟨∇ℓ(t), τt(∇ℓ(t))⟩ ≤−λmin(τt)∥∇ℓ(t)∥2F ≤ −2µλmin(τt)L(t),
(6)



Convergence under gradient flow

How to prove λmin(τt) has a uniform positive lower bound?
There exists an non-negative function α(D, σmin(W )) that
depends on imbalance and product, such that for all t ≥ 0,

λmin(τt) ≥ α(D(t), σmin(W (t)))

= α(D(0), σmin(W (t)))

= α(D(0), σmin(W (0))).

(7)



Toy example
Objective L(w1,w2) =

1
2(y − w1w2)

2 where y ,w1,w2 ∈ R. Using
same derivations, we can show

L̇(t) ≤ −
(
w1(t)

2 + w2(t)
2
)
L(t)

= −
√(

w1(t)2 − w2(t)2
)2
+4

(
w1(t)w2(t)

)2
L(t)

= −
√(

w1(0)2 − w2(0)2
)2
+4

(
w1(t)w2(t)

)2
L(t)

(8)

Regarding the product, one can show

|w1(t)w2(t)| ≥ |y | − |y − w1(t)w2(t)|
≥ |y | − |y − w1(0)w2(0)|
= |y | − |L(0)|

(9)

Thus, we have

L̇(t) ≤ −
√(

w1(0)2 − w2(0)2
)2
+4

(
|y | − |L(0)|

)2
L(t) (10)



Difference Between Gradient Flow and Gradient Descent

When using gradient flow(GF), imbalance is invariant,

Ḋ(t) = 0 (11)

When using gradient descent(GD), imbalance changes at each
iteration,

D(t + 1) = D(t) + O(η2) (12)



Convergence of non-overparametrized model under GD
Notice that ℓ(t) is K -smooth and satisfies µ-PL condition, where
K = σ2

max(X ), µ = σ2
min(X ). Then, the following smoothness

inequality holds for any W ,W+:

ℓ(W+) ≤ ℓ(W )+⟨∇ℓ(W ),W+ −W ⟩+ K

2
∥W+ −W ∥2F (13)

After substituting the GD update with fixed step size η

W (t+1) = W (t)− η∇ℓ(t). (14)

into the smoothness inequality in equation 13 we obtain

ℓ(t+1) ≤ ℓ(t)− η∥∇ℓ(t)∥2F +
K

2
η2∥∇ℓ(t)∥2F

= ℓ(t)− η
(
1− K

η

2

)
∥∇ℓ(t)∥2F

≤ (1− 2ηµ+ Kµη2)ℓ(t)

(15)

if the step size satisfies η < 2
K .



Convergence of overparametrized model under GD

The update of the product is

W (t+1) = W1(t+1)W2(t+1)

=
(
W1(t)− η∇ℓ(t)W2(t)

⊤)(W2(t)− ηW1(t)
⊤∇ℓ(t)

)
= W (t)− ητt(∇ℓ(t)) + η2∇ℓ(t)W (t)⊤∇ℓ(t). (16)

Then, we plug in the update of the product in the smoothness
inequality

ℓ(t+1) ≤ ℓ(t)+⟨∇ℓ(t),W (t+1)−W (t)⟩

+
K

2
∥W (t+1)−W (t)∥2F

(17)



Convergence of overparametrized model under GD

Lemma
If at the t-th iteration of GD applied to the over-parametrized loss
L, the step size η satisfies

λmin(τt)− η∥∇ℓ(t)∥F∥W (t)∥F

− Kη

2

[
λmax(τt) + η∥∇ℓ(t)∥F∥W (t)∥F

]2≥ 0 ,
(18)

then the following inequality holds

L(t+1) ≤ ρ(η, t)L(t) , (19)

where

ρ(η, t) = 1− 2ηµλmin(τt) + Kµη2λ2
max(τt)

+ 2η2µσmax(W (t))∥∇ℓ(t)∥F
+ 2η3µKλmax(τt)σmax(W (t))∥∇ℓ(t)∥F
+ η4µKσ2

max(W (t))∥∇ℓ(t)∥2F . (20)



Comparison

The convergence rate of non-overparametrized model is

ρ(η, t) = 1− 2ηµ+ Kµη2 (21)

The convergence rate of overparametrized model is

ρ(η, t) = 1− 2ηµλmin(τt) + Kµη2λ2
max(τt)

+ 2η2µσmax(W (t))∥∇ℓ(t)∥F
+ 2η3µKλmax(τt)σmax(W (t))∥∇ℓ(t)∥F
+ η4µKσ2

max(W (t))∥∇ℓ(t)∥2F . (22)



Towards linear convergence

▶ spectral bound for τt and W (t).

p1 ≤ σmin(W (t)) ≤ σmax(W (t)) ≤ p2

α(D(t), σmin(W (t))) ≤ λmin(τt) ≤ λmax(τt) ≤ β(D(t), σmax(W (t)))

▶ control of imbalance: we show that if loss decreases linearly,
then ∥D(t)− D(0)∥F ∼ O(η)

▶ uniform bounds on τt : when η is small but not infinitesimal

c1α0 ≤ λmin(τt) ≤ λmax(τt) ≤ c2β0 (23)

where 0 < c1 < 1, c2 > 1.



Theorem: Uniform bound on τ and W
Assume α0 > 0, and choose 0 < c1 < 1, and c2 > 1. Let ηmax

1 and ηmax
2

be, respectively, the unique positive roots of the following two
polynomials in η

a4(0)η
3+a3(0)η

2+
(
a2(0)+

4c2L(0)σ
2
max(X )

c2 − 1

)
η=a1,

a4(0)η
3+a3(0)η

2+
(
a2(0)+

8c2β0L(0)σ
2
max(X )

(1− c1)α0

)
η = a1.

(24)

Then, for any 0 < η ≤ ηmax := min{ηmax
1 , ηmax

2 }, the following holds for
all t = 0, 1, . . .

c1α0 ≤ λmin(τt) ≤ λmax(τt) ≤ c2β0

p1 ≤ σmin(W (t)) ≤ σmax(W (t)) ≤ p2.
(25)

where

a1 = 2(c1α0)σ
2
min(X ),

a2(t) = 2
√
2κL(t)σ6

min(X )p2 + κσ4
min(X )(c2β0)

2,

a3(t) = 2
√
2κ3L(t)σ10

min(X )c2β0p2,

a4(t) = 2κ2σ6
min(X )p22L(t). (26)



Theorem (Convergence rate of gradient descent on two-layer
linear networks)

Under the same assumptions, for any
0 < η ≤ ηmax := min{ηmax

1 , ηmax
2 }, the loss function under GD

satisfies
L(t+1) ≤ f (η, t)L(t),

for f (η, t) = 1− a1η + a2(t)η
2 + a3(t)η

3 + a4(t)η
4 is the upper

bound of ρ(t), and with

0 < f (η, t) ≤ f (η, 0) < 1, ∀t ≥ 0. (27)

Thus, the loss converges linearly, i.e.,

L(t) ≤ Πt
k=0f (η, k) L(0) ≤ f (η, 0)tL(0). (28)

with rate given by f (η, 0).



Gradient Descent with Adaptive Learning Rate
The descent lemma we have is the following,

L(t+1) ≤ {1−a1η+a2(t)η
2+a3(t)η

3+a4(t)η
4}L(t) := f (η, t)L(t),

(29)
where

a1 = 2(c1α0)σ
2
min(X ),

a2(t) = 2
√

2κL(t)σ6
min(X )p2 + κσ4

min(X )(c2β0)
2,

a3(t) = 2
√

2κ3L(t)σ10
min(X )c2β0p2,

a4(t) = 2κ2σ6
min(X )p22L(t). (30)

For each step, we can actually choose the learning rate which
minimize the upper bound,

η∗t = argmin
η>0

f (η, t)

. Then, we get a sequence of learning rate {η∗t }∞t=1.



Asymptotic Convergence rate
The convergence rate we have is a fourth-order polynomial, it’s
hard to interpret. However, one observation is

lim
t→∞

a3(t) = 0,

lim
t→∞

a4(t) = 0.
(31)

Thus, the rate becomes a quadratic term when t → ∞,

f (η,∞) = 1− a1η + a2(∞)η2, (32)

and

min
η

f (η,∞) = 1− α2c22
κβ2c21

≥ 1− 1

κ
. (33)

Current work: by studying the smoothness constant and PL
constant w.r.t. (W1,W2), we can prove

min
η

f (η,∞) = 1− αc22
κβc21

. (34)



Simulation: comparison with related work

The data generation and weight initialization is the following

X = I20,Y = XW (0) + 0.01ε ,

W (0) ∈ R20×1,W (0)[i , j ] ∼ N (0, 1/4) ,

ε ∈ R20×1, ε[i , j ] ∼ N (0, 1) .

(35)

Figure 1



Simulation: over-parametrized vs non-overparametrized

The data generation and weight initialization is the following

X ,Y ∈ R1000×20,Y = XW (0) + 0.001ε ,

W (0) ∈ R20×20,W (0)[i , j ] ∼ N (0, 1) ,

ε ∈ R20×20, ε[i , j ] ∼ N (0, 1) .

(36)

We monitor the number of iterations needed to reach error 10−8.

over-parametrization non-overparametrization

normal 18.92 14

NTK 12.7 9.08

xavier 14.74 12

He 13.8 10.96

uniform 17 12.96



Conclusion and Future Work

The contribution of our work is the following,

▶ We prove in the small learning rate regime, linear networks
optimized via GD has linear convergence.

▶ We design a learning rate scheduler based on our theory.

For future work:

▶ Our work is in the small learning rate regime, what will
happen in the large learning rate regime?

▶ How does imbalance interact with other phenomenon in deep
learning, such as edge of instability, flat minima?


