On the Convergence of Gradient Flow on
Multi-layer Linear Models

Hancheng Min

QU S JOHNS HOPKINS

MATHEMATICAL INSTITUTE
for DATA SCIENCE

Vision Lab Retreat
September 2nd



Acknowledgements

Salma Tarmoun Ziging Xu René Vidal Enrique Mallada

JOHNS HOPKINS

MATHEMATICAL INSTITUTE
for DATA SCIENCE




Introduction

* In deep learning, neural networks are typically overparametrized
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= Highly underdetermined problem, many solutions

= Variants of gradient descent often find those with good generalization

* Question: What is the effect of overparameterization on the learning
dynamics of optimization algorithms?



Introduction

* Prior work suggests that in this overparametrized regime, specific initialization
may:
= Accelerate convergence (implicit acceleration)

= Promote generalization (implicit bias)

* Question: Are there general properties of initialization that benefit
convergence (This talk) and implicit bias?

* For overparametrized linear models, £ (Wy, -+, W;):= f(W W, - W})
gradient flow, W, =—09L/oW,
or gradient descent, Wikt =wk —naL/ow,

the answer is YES!



Non-convex Optimization Landscape

* Loss function for neural network is

generally non-convex
Use proper

* The gradient flow/descent

" may get stuck at local minimum
(non-optimality)
" may take long time to escape some

saddle point
(slow convergence)

Infinitely many global optimal
solutions, how can GF/GD reach one
that generalizes well? (implicit bias)
[Min’21]

H Min, S Tarmoun, R Vidal, and E Mallada. “On the explicit role of initialization on the 3
convergence and implicit bias of overparametrized linear networks.” ICML 2021.



Existing Analyses for Specific Initialization

* NTK Initialization [Jacot’18]; Large hidden layer width, random initialization

= Exponential convergence for GF

= “lazy regime”: rarely seen in practical networks [Chizat’19]

* Small initialization [Stoger’21]; All weight parameters are initialized close to zero

= |[nteresting studies on implicit bias: low-rank, sparse models

= Slow convergence (initialized close to origin, a stationary point)

Li’'21]: init.scale: a, # of iter.required: 0( . )

a(L—2)

A Jacot, F Gabriel, and C Hongler. Neural tangent kernel: Convergence and generalization in neural networks. NeurlPS 2018
L Chizat, E Oyallon, and F Bach. On lazy training in differentiable programming. NeurlPS 2019.
L)) R&SMHCMIM&&&SMptIOﬁlﬁ@nllnltbahz&ttﬁnctral learning: Optimization and generalization guarantees for

overparameterized low-rank matrix reconstruction. NeurlPS 2021.
J Li, TV Nguyen, C Hegde, and R K. W. Wong. Implicit sparse regularization: The impact of depth and early stopping. NeurIPS 2021.



Contribution

* Non-NTK, non-small initialization is mostly studied for linear networks

* Existing analyses for convergence under gradient flow 0 = —VL(0) require
strong assumptions on the initialization (balanced, or spectral)
Spectral Non-spectral
(with sufficient margin)
Balanced [Saxes’14] [Arora’18]
[Gidel’19]

Sufficiently [Tarmoun’21] Our work
Imbalanced [Yun’21]

A Saxe, J Mcclelland, and S Ganguli. “Exact solutions to the nonlinear dynamics of learning in deep linear neural network.” ICLR 2014

G Gidel, F Bach, and S Lacoste-Julien. “Implicit regularization of discrete gradient dynamics in linear neural networks.” NeurlPS 2019

S Arora, N Cohen, N Golowich, and W Hu. “A convergence analysis of gradient descent for deep linear neural networks.” ICLR 2018

S Tarmoun, G Franca, B D Haeffele, and R Vidal. “Understanding the dynamics of gradient flow in overparameterized linear models.” ICML 2021
C Yun, S Krishnan, and H Mobahi. A unifying view on implicit bias itraining linear neural networks. ICLR2020
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Contribution

* Non-NTK, non-small initialization is mostly studied for linear networks

* Existing analyses for convergence under gradient flow 0 = —VL(0) require
strong assumptions on the initialization (balanced, or spectral)
Spectral Non-spectral
(with sufficient margin)
Balanced [Saxes’14] [Arora’18]
[Gidel’19]
Sufficiently [Tarmoun’21] Our work
Imbalanced [Yun’21]

* We show
[ Rate > (constant)+/ (Imbalance)2+4(Margin)? ]

* Exponential convergence via sufficient imbalance or sufficient margin
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Problem Setting

 Problem: Find solution that obtains

fr=_min_f(W)

WeRnxm
* Assumptions: Objective f is u-strongly convex, and K-smooth

* Overparametrization: Multi-layer linear model:

Wlf’n”i.,fl}hﬁ (Wy, -, W)= fF(W Wy --- W)

 Examples:
= Asymmetric matrix factorization: f(W) = ||Y — W||3/2, W = W, W,
= Multi-layer linear networks: f(W) = ||Y — XW||%2/2, W =W, W,--W,



Problem Setting

 Problem: Find solution that obtains

fr=_min_f(W)

WeRnXTn
* Assumptions: Objective f is u-strongly convex, and has K-Lipschiz gradient

* Overparametrization: Multi-layer linear model:

Wlf’n”i.,fl}hﬁ (Wy, -, W)= fF(W Wy --- W)

o L (Wy,-,W;)is non-convex, and its gradient is not globally Lipschiz. How can
gradient flow or gradient descent find the global optimal f*?

* | will mainly discuss gradient flow W, = — d.L/0W; in this talk



Problem Setting: Overparametrized Linear Model

* Multi-layer linear model(network):
LWy, , W)= fF(W, W, --- W)

yT = xTW1W2 WL ]

Output vector

* Overparametrized:
W, e R-* [ =1,... L
ho =n,hy =m
min{hq, -, h;_1} = min{n, m}
= (" =/

A deep linear network is FAR simpler
than practical neural networks, yet

not fully understood.

W

Network

Weights

Input vector

T

y m:hL

Output Dim

hi—1 ‘\
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Width

Input Dim
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Problem Setting: Assumptions

* Find solution that obtains

fr=_min_f(W)

WeRnXTn

* Assumptions: Objective f is u-strongly convex, and K-smooth

» satisfies Polyak-tojasiewicz(PL)-inequality:

IVFDINE =2 y(FW) = £, YW
* is u-strongly convex, and K-smooth (Non-essential for convergence of GF)



Convergence with PL-inequality

Non-overparametrized

* Gradient Flow: W = =Vf (W)

e Global PL-Inequality .
IVFMINIE = y(FW) — f)

c fW) =(VFW), W)r=—IIVFMIIE < —y(FW) =)



Convergence with PL-inequality

Non-overparametrized 4 ™\
Gronwall’s inequality
e Gradient Flow: W = V(W) x(t) = —yx(t)
= x(t) < exp(—yt) x(0)
N\ )
e Global PL-Inequality .
IVF M = y(FW) = ) JL

* f) < —y(fFW) - f*)

(by Gronwall’s inequality)
> (FW®) — £ < exp(—yt) (f(W(0)) — £7)

f(W(t)) converges to f* exponentially
* Rate: PL-Constant y



Convergence under overparametrization

Non-overparametrized Overparametrized
f(w) LWy, , W) = fF(Wi W5 - W)

Gradient Flow: W = —Vf(W) | * Gradient Flow: W, = —aL/dW,

e Global PL-Inequality * Local (Weight-dependent) PL-inequality
IVF M = y(FW) = ) 77
* f converges exponentially to * L converges exponentially to L™ under
[ regardless of initialization proper initialization

Rate = PL-Constant y * Rate = y+/(Imbalance)2+4(Margin)?
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Warm-up Example: Scalar dynamics

* f(w)isafunctionofscalarw € R

* PL-inequality

W2 =z y(fw) — ),

e Simplest overparametrization w — uv

L (u,v) = f(uv)

Yw

11



Scalar Dynamics: Imbalance

Gradient flow induces conservation law

. /
u=—f"(uv)v :
. , = d=u*-v?,d=0
v=—f(uv)u
CH .
imbal d 2 2 | u’ —v? =0],
° — —_— \ ’
imbalance us —v 1\ Balanced \ |
Is time-invariant | Initialization -’
<" Imbalanced
 Conservation law arises due to ‘. N nitialization
: \ . Ju?—0v?2 =3
scaling symmetry
1%
u-su, v-o
(Noether’s Theorem connects
symmetry to conservation law)
(0,0)

12



Scalar Dynamics: Weight-dependent PL inequality

* Gradient flow on L(u,v) = f(uv)
u=—f"(uv)v, v=—f"(uv)u

o IVLIIE = If (wv)|*(u? + v?)

[PL-inequaIity If'1> = v(f — f*)]

c VL@ WIE =2 y(w® + v*)(L(w,v) — L)
(weight-dependent PL-inequality)

e Given initialization 1(0), v(0), find a lower bound for u?(t) + v?(t)

13



Scalar Dynamics: Rate Bound

o |IVL|IE = y(u? + v?)(L — LY Express u?, v by
imbalance d = u? — v?
. |VL|IE = y\/dz + 4(uv)2(L — L) and product uv
2 d +/d? + 4(uv)?

2

2 —d + \/d22+ 4(uv)?

14



Scalar Dynamics: Rate Bound

o |IVL|IE = y(u? + v?)(L — LY

o |IVL||Z = y/d? + 4(uv)2(L — LY)

* fis u-strongly convex, and K-smooth
d % * Loss L is non-increasing
4 N ( )
imbalance d is time invariant A lower bound on product uv

d(©)] = 1d(0)] u@v(t)l = [w| - VK/plw* = u(0)v(0)]

:= Imbalance _ +
= Margin

\ J \ J

N 2

[(uz +v?2) = yy/(Imbalance)2+4(Product)2> y\/(lmbalance)z+4(Margin)2]

14



Scalar Dynamics: Summary

(I.ocal (Weight-dependent) PL-inequality A

2 2 2 x
- IVEllE 2 y(u” + v )&~ 29 ) /Control imbalance and product )
- o ~N by initialization
“Weight” to imbalance and product
* Imbalance is time invariant
L (u? +v?) = /d? + 4(uv)? JAN Product = Margin Y
- -
/Initialization-dependent PL-inequality — Exponential Convergence )
VL] > )/\/(I‘mbalance)2 + 4(Margin)?(L — L")
(Gronwall)
\=> (L(t) — L") < exp (—)/\/(Imbalance)2 + 4(Margin)2t) (L(0) — L*)/

15
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To General Case

Warm-up Example: f (uv) General Case: f (W W, --- W)
f L—-1
Imbalance] d:=u? — v? {Dy =W W, — Wi Wi},
Margin] Wl =K ulw = u©@v O] |omnW") = K/ulW* = WOl
Local PL-ineq] IVLI2 =y @2 + )L~ L) VLI 2 ¥ Ain (T ) (£ £9)
-
Weight to imbalance |, ,
and prOdUCt ](u TV ) — \/dz + 4(UU)2 Amin (T{Wl}i;l) = CZ(Imbalance, Umin(W))
\- - -

[Control imbalance and product by initialization]
-

Exponential Convergence:
Rate >y a(Imbalance, Margin)




Warm-up Example: f (uv) General Case: f(W,; W, ---W})

( L—-1
Imbalance] d: = u? — v? {D, =W W, — Wz+1W17;1}l=1
LMargin] [|W*| — JK/u|lw* — u(O)v(O)IL [amm(w*) —JK/n||w* - W(O)IIFL
Local PL-ineq] IVLIZ =y @2 + 0L~ L) IVEIE 2 ¥ Amin (T e ) (£ = £9)
p
e = R i) 2 et oan)
\. - -

[Control imbalance and product by initialization]

- =

Exponential Convergence:
Rate = y a(Imbalance, Margin)




General Convergence Analysis: Imbalance

« LWy, W) = f(W Wy - W)

Gradient Flow: W, = —dL/0W,

Imbalance matrices|D,,| D5, -, D;_4

(nXhy) (hyXh;)
W =[W1 . WZ]' [/l/3 WL—l . WL

™~

GymmEtry: Wl — W]_S, Wz — S_1W2

Conservation law
_ D, = Wlw, — w,W], D;=0

J

17



General Convergence Analysis: Imbalance

o LWy, W) = fF(W Wy - W)
* Gradient Flow: W, = —aL/0W,

* Imbalance matrices D, Dz,\---,DL_l

(h1Xhy) (h,Xh3)
W — Wl .[WZ . W3] WL—l . WL

N\

{ D, = WZTWZ - W3W3T J

17



General Convergence Analysis: Imbalance

o LWy, W) = fF(W Wy - W)
* Gradient Flow: W, = —aL/0W,

* Imbalance matrices Dy, D5, |D;_4

(hp—aXhp_q) (hy_y4Xm)
W — Wl . WZ . [/l/3 [WL—]. . WL]

.

[ Dj—1 = WLT—1WL—1 — WLWLT ]

17



General Convergence Analysis: Imbalance

LWy, -, W) = f(W Wy - W)
Gradient Flow: W, = —dL/0W,

. L—1
* |mbalance matrices {Dl = WITWI — Wl+1Wl£1}l_1

e Imbalance matrices are time-invariant under GF
D, =0, [=1,-,L—1

17



Warm-up Example: f (uv) General Case: f(W,; W, ---W})

( L—-1
Imbalance] d:=u? — v? {Dy = W' W, = Wi Wi}
LI\/Iargin] [|W*| — JK/u|lw* — u(O)v(O)IL lamm(W*) —JK/n||w* - W(O)IIFL
Local PL-ineq] IVL|Z = y(u? + v3) (L — L) IVLIZ = v+ Ain (T{Wl}lel) (L—LY
-
e ) < ETRGT o T, ) 2 it )
\. > = -

[Control imbalance and product by initialization]

-

Exponential Convergence:
Rate = y a(Imbalance, Margin)




General Convergence Analysis: PL-inequality

o LWy, W)= f(WW,5--W;) Recall warm-up example: A
* Gradient Flow: W, = —9.L/0W, IVLIIE
= |f'w)|*(w? + v?)
= (@ +v)f, ),
- |[veiwi 1)|| = (Towye VW), VEW)) N /
(F )

Wk, is a positive semi-definite operator on R™*™

« L= f(WW,),

\_

« L= f(WW,W3),
Ttw, w, wi E = WaiW, WS WE + WyW{ EW35 W3 + EW5 W, W, W;

:T{WIJWZ}E —_ W1W E + EW W2

18



General Convergence Analysis: PL-inequality

o« LWy, W) = f(W W, ---W,), Gradient Flow: W, = —aL/dW,

. ||vedwide 1)|| = (T VF W), Vf(W))

[Min-max theorem]

> Zanin (T, ) IVf VIR

(PLNVFIE = (= ) ]

Z ¥ Amin (T{Wl}zL=1) (L—-L%)

* Local (weight-dependent) PL-inequality

VLAWY, 2 ¥ Amin (T ) (£ = £7)

18



Warm-up Example: f (uv) General Case: f(W,; W, ---W})

( L—-1
Imbalance] d:=u? — v? {Dy = W' W, = Wi Wi}
LMargin] [|W*| — JK/u|lw* — u(O)v(O)IL lamm(W*) —JK/n||w* - W(O)IIFL
Local PL-ineq] IVLIZ =y @2 + 0L~ L) IVEIE 2 ¥ Amin (T e ) (£ = £9)
( . .
) < ETRGT T, ) 2 it 1)
- - -

[Control imbalance and product by initialization]

- =

Exponential Convergence:
Rate = y a(Imbalance, Margin)




Lower Bound on Convergence Rate: Summary

Linear model Rate Bound Expression
Multi-layer | 2
Scalar weights | a({d;};={, w) ( Cjurzufatwe) + (Lw2-2/L)2
F(Wiwsy W) y imbalance
Two-layer
Matrix weights | a(Dy, 01nin (W) ) | —Spread + \/ (Spread + Gap)?+4o5,, (W)
f(Wi3)
Three-layer A complicated expression

Matrix weights
f(WiW,W3)

a(D4,D5)

_ z Cumulative
imbalance

19




Lower Bound on Convergence Rate: Summary

Linear model Rate Bound Expression
Multi-layer | 2
Scalar weights | a({d;};={, w) ( Cjumulatwe) + (Lw2-2/L)2
F(Wywy - wy) . imbalance
Two-layer
Matrix weights | a(Dy, 01nin (W) ) | —Spread + \/ (Spread + Gap)?+4o5,,, (W)
f(WiWw3)
Three-layer A complicated expression
Matrix weights a (D4, Dy) - Z Cumulative
f (Wi WoW3) imbalance

Details to come!

19




Convergence under overparametrization: Summary

Non-overparametrized Overparametrized
f(w) LWy, -, W) = f(W Wy --- W)

Gradient Flow: W = =Vf(W) | * Gradient Flow: W, = —dL/oW,

* Global PL-Inequality * Local (Weight-dependent) PL-inequality
VFW)||% = w)—f* 2 )
” f( )“F V(f( ) f ) ”VL({WZ}%:QHF <vy- Amin (T{Wl}szl) (L — L )
* f converges exponentially to « L converges exponentially to L under
f ™ regardless of initialization proper initialization

* Rate = PL-Constant y * Rate =y a(Imbalance, Margin)

20
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Lower Bound on Convergence Rate: Overview
* We want a lower bound that depends on both imbalance and product

Amin (jiwl}’f:l) = C(( {Dl}l 1, Omin (W) )

 The (arguably) optimal bound is given by

) i i)
{w l}l 1 [=1

s.t. WW, =Wy Wh,=D, 1l=1,-,L—

W1W2 WL =W

* We will compare our bound to the optimal value of (*)

1

21



Lower Bound on Convergence Rate

Linear model Rate Bound Expression
Multi-layer | 2
Scalar weights | a( {d;}[={,w) ( Qurzullatlve> + (Lw2-2/L)2
F(Wiwsy W) \ imbalance
Two-layer
Matrix weights | a(Dy, omin(W)) | —Spread + \/(Spread + Gap)?+4of, (W)
f(WiW3)
Three-layer A complicated expression

Matrix weights
f(WiW,Ws)

a(Dl, Dz)

~ 2 Cumulative
imbalance




Multi-layer Scalar Networks

* f(w)isafunctionofscalarw € R

e Multi-layer scalar networks
fwiwy --wy), weERIL=1,--L

* Imbalance

d; == wf — wWfiq, [=1,--L—1

* Analysis for scalar networks arises when studying general matrix model
= under specific initialization (spectral initialization)

= with additional network structure (diagonal linear networks)

22



Multi-layer Scalar Networks: Formulation

* We want a lower bound that depends on both imbalance and product

Amin (T{Wz}%=1) = (I( {dl}l 1, W )

* Ideally, we want to solve

W
SRS | R
{Wl}%zl =1 :W
L_

S.t. Wl Wl+1=dlll_1 1

W1W2 cee WL — W

= Only isolated points in the feasible set
= All feasible points have the same objective value a*( {d;}}={, w)
= a*({d;}i={, w) has no closed-form expression in general

(need to solve an L-th order polynomial)

23



Multi-layer Scalar Networks: Rate Bound

« a*({d;}}={,w) has no closed-form expression in general

L2
Proposition 1. o*( {d;};={,w) = (H C;’ZZZIIZZCU:) + (Lw?2-2/L)2
\
Cumulative imbalance?
2. 12,2
[d3 H@% ZLTE NI 114)]
A 4\
Reorder the weights
_ Cumulative
X X = ,
> ! imbalance
by magnitude
Wi Wi Wi Wi Wi W) Wi (Wi



Multi-layer Scalar Networks: Effect of Imbalance

« a*({d;}}={,w) has no closed-form expression in general

Cumulative\*
Proposition 1. a™( {d , W) = ( , ) + (Lw2—2/L)2
p ({ l}l 1, W) \ Hlmbalance ( )
» Effect of imbalance in deep networks
A
\/(AL—l)Z + (LWZ—Z/L)Z
> .

' ] ‘ =4 Yun et al. 20] derived rate

I B R B bound 2“~1 (w.o. product)
2 2 2 2 Chulhee Yun, Shankar Krishnan, and Hossein Mobabhi. A unifying

W]_ WZ WL—]_ WL view on implicit bias in training linear neural networks. ICLR 2020
25



Multi-layer Scalar Networks: Effect of Imbalance

« a*({d;}}={,w) has no closed-form expression in general

Proposition 1. o*( {d;};={,w) =

\

(I

(2
Cumulatwe) + (Lw2-2/L)2

imbalance

Effect of imbalance in deep networks

J(SL_l(L _ 1)!)2 + (LWZ—Z/L)Z

25



Multi-layer Scalar Networks: Effect of Imbalance

« a*({d;}}={,w) has no closed-form expression in general

Proposition 1. o*( {d;};={,w) =

\

(I

(2
Cumulatwe) + (Lw2-2/L)2

imbalance

Effect of imbalance in deep networks

Imbalanced initialization could
accelerate convergence significantly
for deep networks

(For gradient flow!)

In practice, this is more related to
exploding gradient

25



Lower Bound on Convergence Rate

Linear model Rate Bound Expression
Multi-layer | 2
Scalar weights | a({d;};={, w) ( Cjumulatwe) + (Lw2-2/L)2
F(Wywy - wy) . imbalance
Two-layer
Matrix weights | a(Dy, 01nin (W) ) | —Spread + \/ (Spread + Gap)?+4oz;, (W)
f(WiW3)
Three-layer A complicated expression
Matrix weights a (D4, D;) - 2 Cumulative
f (Wi WoW3) imbalance

https://arxiv.org/abs/2105.06351




Imbalance quantities

¢ L= W), (W € R™M W, € R
* Imbalance D; = W W; — W,W.] := D

0.4r

0.3F

Nonzero 0.2L

Eigenvalues

Of D olp "xxx ------------------------------------------------------------------
Ai(D)

0Ok

-0.1F

-0.2

...............

-0.3




Imbalance quantities

« L= f(WW),

(Wl = Rnxh’ W2 = thm)
* Imbalance D; = W W; — W,W.] := D

e —— T A, Positive Spectrum Spread
0.3+
Nonzero 0.2l
Eigenvalues
of D 0.1 ; A
(o) | T ey WaE
0 »
-0.1 [T AR —A_
ol |
_03 ] ] ] ]
1 . n h—m-+1

26



Two-layer Linear Networks

* We want a lower bound that depends on both imbalance and product

Amin(g-{wl,wz}) > a(Dy, 0min (W) )
and

Ttw, w3 E = WAiW{ E + EW, W,

* Ideally, we want to find
a*(Dy,W) = min Amin(WlwlT) + Amin(WZTWZ)

{W1,W,}
s.t. Wiw, —w,w}] =D,
W1W2 — W

27



Two-layer Linear Networks: Rate Bound

Proposition 2.

a*(Dy, W) =

—A, + \/(A+ +A)* + 402 (W) —A_ +\/(A_ +A)* + 402 (W)

Equality holds whenn # m

« —Spread + J(Spread + Gap)?+4c?

min

W)

28



Rate Bound Approximate form

* For the warm-up example f (uv)
Rate = \/(Imbalance)?2+4(Product)?

 For the matrix case f (W, W,)

Rate = —Spread + \/(Sp'read + Gap)?+40?(Product)

= When Spread is small

Bound = +/ (Gap)2+4c2(Product)

= When Spread is large

Bound = Gap

28



Width affects imbalance quantities

e n=20,m =10
e Random initialization

[Wilij, Welij~N (0' %)

 Compare Gap with Spread

= Small Width (h=50)
Large Spread, small Gap

=" Large Width (h=1000)
Small Spread, large Gap

All non-zero imbalance
eigenvalues (h = n + m)

3
A+ « h =50
"""""""""""""""""""""""""""" T o h = 1000
91l
Ay
g Ly o
oo 69°°°°° ...... .<.>,.o.,oi.. ............ é .......................................................
Ni(D) | T R A
0 1
................................................................................................. S
A_
....................................................................... Y | @ g g e
A_
_2 1 1
1 n h—m+1 h




Imbalance quantities affects convergence “non-trivially”

n=20m=5,L =%HY_\/LHW1W2H12:

Random init. [W;];;, [W2];j~N(0,1)
Target Y has small norm
(Rate mainly depends on imbalance)
Different loss curve
= h=30, large spectrum spread,
large initial rate then slows down,

bound is good at late stage

= h=1000, small spectrum spread,
rate does not change too much,

bound is good

n
(@)

S

Log squared /2 L

0°4

—h
<

—
<

Instantaneous Rate
w

—
1

o

_ — h =30
— h =300

i —— h=1000
{ ---- Global Bound

h =100

000 025 050 075 1.00 125 150

1 \ ---- Bounds on insta. rate
—\

N

000 025 050 075 100 1.25 1.50
lteration k led

log L(k)



Two-layer Linear Networks: Summary

(Prior work)
----- Balanced initialization

Sufficient margin
+ Sufficiently balanced

(Our contribution)

Homogeneous imbalance
Sufficient level of imbalance

Sufficient margin

—— o - o - e o e e o e e e e o e o] -

Initialization for the gradient flow on
1
Y —uvTliz

Balanced initialization D:=UTU -VTV =0

29
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Conclusion
We study the gradient flow on L(Wy, -+, W) = f(W W, --- W}):

Rate >y a(Imbalance, Mar gin)
Our analysis also works for classification task with exponential loss

1
IVFMllr 2y (FW) = f*) = L() = 0 (?)

Future work:
* Gradient Descent (Ongoing work)
e Extension to nonlinear networks (ReLU net, etc.)

Thank you!
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