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Overparametrization is critical in DL: Double Descent

Risk Under-Parameterized : Over-Parameterized
—

I

Modern
Interpolating Regime

Classical
Regime

Test Risk

l"'v,_'Training Risk

e '+ Interpolation Threshold
Capacity of H

Figure 1: The “Double Descent” phenomenon: Generalization performance of ML models
(Loss/risk/cost during test time) increases as the model capacity/complexity increases once
beyond the interpolating threshold (Overparametrized regime)
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Classic vs. DL views on overparametrization

Classic view:
« A problem is overparametrized if underdetermined

+ Explicit regularization for finding simple solutions (Occam'’s razor)
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+ Explicit regularization for finding simple solutions (Occam'’s razor)

DL view:

* A problem is overparametrized if underdetermined, and the model class can be
parametrized by many more parameters than needed

+ Implicit regularization induced by model parametrization when training with
gradient-based algorithms under proper initialization

Example: Matrix Sensing under linear operator A

Explicit reg.) mi —AW)||>+~||W||. (mplicit Reg. i — AW Wy - - W)
(Explicit reg) min_[ly—AW)[|"+~|[Wll. (mplic eg) min ly— AWz - W)l
di=d,dy1=d =W
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Implicit biases of training dynamics

RO =0

+ Network parameters (weights) # updated through some optimization algorithm to
minimize some loss/risk/cost function £(#)
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Implicit biases of training dynamics

RO =0

+ Network parameters (weights) # updated through some optimization algorithm to
minimize some loss/risk/cost function £(#)

+ Implicit Bias: depending on the choice of initialization scale, step size, gradient
stochasticity, etc., one obtains different 6*
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Incremental learning phenomenon
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Figure 2: Deep matrix factorization exhibits the incremental learning phenomenon.

GDon |ly — A(W W, - - - W,)||* with large depth L, starting from a small initialization:
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1. The singular values of the target/ground-truth matrix are learned sequentially;
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Figure 2: Deep matrix factorization exhibits the incremental learning phenomenon.

GDon |ly — A(W W, - - - W,)||* with large depth L, starting from a small initialization:
1. The singular values of the target/ground-truth matrix are learned sequentially;
2. Large singular values are learned first.
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Related works

+ Incremental learning in matrix factorization: Initially studied by Saxe et al. [2014]; More
indepth analyses by Arora et al. [2019], Gunasekar et al. [2017].
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+ Manifested in other learning problems:

- Spectral bias/frequency priciple in deep learning [Rahaman et al., 2019, Xu et al., 2019]:
Low-frequency components of the target function are learned first;

- Incremental learning when learning a state-space model, or linear Recurrent Neural
Networks(RNNs) [Proca et al., 2025]:
Sequential learning singular values of input-output correlation matrix;

- Incremental learning when training a transformer [Abbe et al., 2023]:
Sequential learning of tasks from low to high complexity.
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Related works

+ Incremental learning in matrix factorization: Initially studied by Saxe et al. [2014]; More
indepth analyses by Arora et al. [2019], Gunasekar et al. [2017].

* Precise characterization of incremental learning in matrix factorization problems is
limited to the two-layer problems (Symmetric, Asymmertic):
- Gradient flow (analyzing closed-form solutions):
Spectral initialization [Gidel et al., 2019, Tarmoun et al., 2021]; General initialization (Our
work)

- Gradient descent (analyzing iterates):
Spectral initialization [Gidel et al., 2019]; Random initialization [Jiang et al., 2023, Jin et al.,

2023]
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Problem Settings

 Loss L(U) = 3[[y —uUT || y=YT = 0,U € R™ (Thistalk: r > n)
* Gradient Flow (GF) on U:

U= —VyL(U) = (v—uuh)u, u(0) = Uy (1)
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Problem Settings

« Loss L(U) = 1|y —uuT

i 2y=y">=0,UeR™ (Thistalk: r > n)

* Gradient Flow (GF) on U:
U=—VyLU) = (v—uum)u, u0) = a'/?u, 3)
« Induced dynamics on W = UU:
W=0U"4+U"0=(y—w)W+ Wy — W), W(0) = UpUy = aW (4)
+ Split the initial condition into Initialization scale « and Initialization shape Uy (W):

We are interested in how incremental learning phenomenon emerges as the initialization
scale decreases.
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Close-form solution

For the induced dynamics on W (A matrix Riccati differential equation):
W= (Y — W)W+ W — W), W) = aW,.

Proposition

by
If rank(Y) = k and the full SVD of Y is ® { ! O} ®T, then (5) has a unique solution:

0 0

W(t) = ®S(t)aW (I, + aG(O)Wo) ' ST ()@,

—1/ 25t 2yt
where Wy = ® Wo® and G(¢) = Fy (eo ) ) 0 J ,S(t) = [eo / 0} ,
n—K n—-K

(5)
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Solution under spectral initialization

Definition

Wy is a spectral initialization if Wy and Y are codiagonalizable, i.e., Wo= Wy is diagonal
Corollary

Let ¥y = diag{oy}_ . If Uy = Py, V), renders Wy = UgUy a spectral initialization, then
the solution to (5) has the form W(t) = ®diag{o; w(t)}7_, P with

an,YUi,OEQU"Vt

(7,'7)/ + (10—/70(620i’yt — 1)

. (10'/70
1+ 20(0',‘701'

oiw(t)= Cifi <K ow(t) Jifi> K, (7)

where 0',"0 = [Wo],',' = [230],',' 2 O,VI
Dynamic modes 0, (t) are decoupled, each learns one singular value of V.
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Learning singular value of Y under small initialization scale

« Ve > 0,dC. > c. > 0, such that for

0iy
sufficiently small a (details later)
Ce s
ow(t) <e, Vt< log — z
Oiy o 3
[o)]
C. £
oiw(t) > oy—e, Vt> log —
Oy «

* 0;w(t) remains small until 9(% log é)

time, followed by an sharp transition

phase of learning o, Figure 3: Learning curve o; w(t) for singular
value oy
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Incremental learning under small initialization scale

a=le-1 a=le-4 a=le-7

N
w0

g
=]

Singular values
=
)

=
(=}

O
n

Time t Time t Time t

Figure 4: Incremental learning emerges as initialization scale decreases
+ When init. scale decreases o — e ™q, transition phase for oy is delayed by UMY
i

 (Incremental learning) For sufficiently small a:
1) (Sequential learning) Transition phases for different o; y become non-overlapping;
2) (Low-rank approximations) Those for larger singular values happen earlier.

13/16



Main result under general small initialization

Theorem (Incremental learning under general small initialization)
Suppose the target Y has K distinct non-zero singular values and:

« The initialization Wy = ® " UyU, ® has an inverse V: let M := max{||V||, ||V

}
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Main result under general small initialization

Theorem (Incremental learning under general small initialization)
Suppose the target Y has K distinct non-zero singular values and:

« The initialization Wy = ® " UyU,

. . 1602 Mm?
* Givensome 0 < ¢ < min{oyy, 1}, letc. = 15m, C. = —2—;
* The init. scale « is sufficiently small so that o < % and Z;:= [ log =, 2ak+1 - log %]
are non-empty;
then the solution W(t) to (5) satisfies that V1 < k < K,
IW(t) — ¥l <&, VteI, (8)

where Y, 1= arg MiNani(z)=« ||Y — Z||¢ is the best rank-k approximation of Y.

14/16



Conclusion and future work

To summarize, we studied incremental learning in matrix factorization with closed-form
solutions. Future work:
1. Removing the assumption that W is invertible.

2. Extension to asymmetric factorization with the symmetrization trick [Burer and
Monteiro, 2005].

3. From identity operator A = Id to those with Ristricted Isometry Property.
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Conclusion and future work

To summarize, we studied incremental learning in matrix factorization with closed-form
solutions. Future work:

1. Removing the assumption that W is invertible.

2. Extension to asymmetric factorization with the symmetrization trick [Burer and
Monteiro, 2005].

3. From identity operator A = Id to those with Ristricted Isometry Property.

Thank you!
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