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Overparametrization is critical in DL: Double Descent

Figure 1: The “Double Descent” phenomenon: Generalization performance of ML models
(Loss/risk/cost during test time) increases as the model capacity/complexity increases once
beyond the interpolating threshold (Overparametrized regime)
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Classic vs. DL views on overparametrization

Classic view:
• A problem is overparametrized if underdetermined

• Explicit regularization for finding simple solutions (Occam’s razor)

DL view:
• A problem is overparametrized if underdetermined, and the model class can be
parametrized by many more parameters than needed

• Implicit regularization induced by model parametrization when training with
gradient-based algorithms under proper initialization

Example: Matrix Sensing under linear operatorA

(Explicit reg.) min
W∈Rd×d

∥y−A(W)∥2+γ∥W∥∗ (Implicit Reg.) min
Wi∈Rdi×di+1

d1=d,dL+1=d

∥y−A(W1W2 · · ·WL︸ ︷︷ ︸
:=W

)∥2
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Implicit biases of training dynamics

• Network parameters (weights) θ updated through some optimization algorithm to
minimize some loss/risk/cost function L(θ)

• Implicit Bias: depending on the choice of initialization scale, step size, gradient
stochasticity, etc., one obtains different θ∗

4 / 16



Implicit biases of training dynamics

• Network parameters (weights) θ updated through some optimization algorithm to
minimize some loss/risk/cost function L(θ)

• Implicit Bias: depending on the choice of initialization scale, step size, gradient
stochasticity, etc., one obtains different θ∗

4 / 16



Incremental learning phenomenon

Figure 2: Deep matrix factorization exhibits the incremental learning phenomenon.

GD on ∥y−A(W1W2 · · ·WL)∥2 with large depth L, starting from a small initialization:

1. The singular values of the target/ground-truth matrix are learned sequentially;

2. Large singular values are learned first.
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Related works

• Incremental learning in matrix factorization: Initially studied by Saxe et al. [2014]; More
indepth analyses by Arora et al. [2019], Gunasekar et al. [2017].

• Manifested in other learning problems:
– Spectral bias/frequency priciple in deep learning [Rahaman et al., 2019, Xu et al., 2019]:

Low-frequency components of the target function are learned first;

– Incremental learning when learning a state-space model, or linear Recurrent Neural
Networks(RNNs) [Proca et al., 2025]:
Sequential learning singular values of input-output correlation matrix;

– Incremental learning when training a transformer [Abbe et al., 2023]:
Sequential learning of tasks from low to high complexity.
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Related works

• Incremental learning in matrix factorization: Initially studied by Saxe et al. [2014]; More
indepth analyses by Arora et al. [2019], Gunasekar et al. [2017].

• Precise characterization of incremental learning in matrix factorization problems is
limited to the two-layer problems (Symmetric, Asymmertic):
– Gradient flow (analyzing closed-form solutions):

Spectral initialization [Gidel et al., 2019, Tarmoun et al., 2021]; General initialization (Our
work)

– Gradient descent (analyzing iterates):
Spectral initialization [Gidel et al., 2019]; Random initialization [Jiang et al., 2023, Jin et al.,
2023]
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Problem Settings

• Loss L(U) = 1
4
∥Y− UU⊤∥2F , Y = Y⊤ ⪰ 0, U ∈ Rn×r (This talk: r ≥ n)

• Gradient Flow (GF) on U:

U̇ = −∇UL(U) = (Y− UU⊤)U, U(0) = U0 (1)

• Induced dynamics on W = UU⊤:

Ẇ = U̇U⊤ + U⊤U̇ = (Y− W)W+ W(Y− W), W(0) = U0U
⊤
0 := W0 (2)
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Problem Settings

• Loss L(U) = 1
4
∥Y− UU⊤∥2F , Y = Y⊤ ⪰ 0, U ∈ Rn×r (This talk: r ≥ n)

• Gradient Flow (GF) on U:

U̇ = −∇UL(U) = (Y− UU⊤)U, U(0) = α1/2U0 (3)

• Induced dynamics on W = UU⊤:

Ẇ = U̇U⊤ + U⊤U̇ = (Y− W)W+ W(Y− W), W(0) = U0U
⊤
0 := αW0 (4)

• Split the initial condition into Initialization scale α and Initialization shape U0(W0):
We are interested in how incremental learning phenomenon emerges as the initialization
scale decreases.
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Close-form solution

For the induced dynamics on W (A matrix Riccati differential equation):

Ẇ = (Y− W)W+ W(Y− W), W(0) = αW0 . (5)

Proposition

If rank(Y) = k and the full SVD of Y is Φ

[
ΣY 0
0 0

]
Φ⊤, then (5) has a unique solution:

W(t) = ΦS(t)αW̃0

(
In + αG(t)W̃0

)−1
S⊤(t)Φ⊤, (6)

where W̃0 = Φ⊤W0Φ and G(t)=

[
ΣY

−1(e2ΣYt−IK) 0
0 2In−Kt

]
, S(t)=

[
eΣYt 0
0 In−K

]
.
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Solution under spectral initialization

Definition
W0 is a spectral initialization if W0 and Y are codiagonalizable, i.e., W̃0=Φ⊤W0Φ is diagonal

Corollary
Let ΣY = diag{σi,Y}K

i=1. If U0 = ΦΣU0V
⊤
U0 renders W0 = U0U⊤

0 a spectral initialization, then
the solution to (5) has the form W(t) = Φdiag{σi,W(t)}n

i=1Φ
⊤ with

σi,W(t)=
ασi,Yσi,0e2σi,Yt

σi,Y + ασi,0(e2σi,Yt − 1)
, if i ≤ K; σi,W(t)=

ασi,0

1 + 2ασi,0t
, if i > K , (7)

where σi,0 = [W̃0]ii = [Σ2
U0 ]ii ≥ 0, ∀i.

Dynamic modes σi,W(t) are decoupled, each learns one singular value of Y.
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Learning singular value of Y under small initialization scale

• ∀ε > 0, ∃Cε > cε > 0, such that for
sufficiently small α (details later)

σi,W(t) ≤ ε, ∀t ≤ 1

2σi,Y
log cε

α

σi,W(t) ≥ σi,Y − ε, ∀t ≥ 1

2σi,Y
log Cε

α

• σi,W(t) remains small untilΘ( 1
σi,Y

log 1
α
)

time, followed by an sharp transition
phase of learning σi,Y

Figure 3: Learning curve σi,W(t) for singular
value σi,Y
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Incremental learning under small initialization scale

Figure 4: Incremental learning emerges as initialization scale decreases

• When init. scale decreases α → e−Mα, transition phase for σi,Y is delayed by M
σi,Y

.

• (Incremental learning) For sufficiently small α:
1) (Sequential learning) Transition phases for different σi,Y become non-overlapping;
2) (Low-rank approximations) Those for larger singular values happen earlier.
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Main result under general small initialization

Theorem (Incremental learning under general small initialization)
Suppose the target Y has K distinct non-zero singular values and:

• The initialization W̃0 = Φ⊤Ū0Ū⊤
0 Φ has an inverse V; let M := max{∥V∥, ∥V−1∥};

• Given some 0 < ε ≤ min{σK,Y, 1}, let cε = ε
16M2 , Cε =

16σ2
1,YM

2

ε
;

• The init. scale α is sufficiently small so that α ≤ cε
M and Ik :=

[
1

2σk,Y
log Cε

α
, 1
2σk+1,Y

log cε
α

]
are non-empty;

then the solution W(t) to (5) satisfies that ∀1 ≤ k ≤ K,

∥W(t)− Ŷk∥ ≤ ε, ∀t ∈ Ik, (8)

where Ŷk := arg minrank(Z)=k ∥Y− Z∥F is the best rank-k approximation of Y.

14 / 16



Main result under general small initialization

Theorem (Incremental learning under general small initialization)
Suppose the target Y has K distinct non-zero singular values and:

• The initialization W̃0 = Φ⊤Ū0Ū⊤
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Conclusion and future work

To summarize, we studied incremental learning in matrix factorization with closed-form
solutions. Future work:

1. Removing the assumption that W̃0 is invertible.

2. Extension to asymmetric factorization with the symmetrization trick [Burer and
Monteiro, 2005].

3. From identity operatorA = Id to those with Ristricted Isometry Property.

Thank you!

15 / 16



Conclusion and future work

To summarize, we studied incremental learning in matrix factorization with closed-form
solutions. Future work:

1. Removing the assumption that W̃0 is invertible.

2. Extension to asymmetric factorization with the symmetrization trick [Burer and
Monteiro, 2005].

3. From identity operatorA = Id to those with Ristricted Isometry Property.

Thank you!

15 / 16



References

E. Abbe, S. Bengio, E. Boix-Adsera, E. Littwin, and J. Susskind. Transformers learn through
gradual rank increase. NeurIPS, 36, 2023.

S. Arora, N. Cohen, W. Hu, and Y. Luo. Implicit regularization in deep matrix factorization.
NeurIPS, 2019.

S. Burer and R. D. C. Monteiro. Local minima and convergence in low-rank semidefinite
programming. Math. Program., 103(3):427–444, July 2005.

G. Gidel, F. Bach, and S. Lacoste-Julien. Implicit regularization of discrete gradient
dynamics in linear neural networks. In NeurIPS, 2019.

S. Gunasekar, B. Woodworth, S. Bhojanapalli, B. Neyshabur, and N. Srebro. Implicit
regularization in matrix factorization. In NeurIPS, 2017.

L. Jiang, Y. Chen, and L. Ding. Algorithmic regularization in model-free overparametrized
asymmetric matrix factorization. SIAM Journal on Mathematics of Data Science, 5(3):
723–744, 2023.

J. Jin, Z. Li, K. Lyu, S. S. Du, and J. D. Lee. Understanding incremental learning of gradient
descent: A fine-grained analysis of matrix sensing. In ICML, 2023.

A. M. Proca, C. C. J. Dominé, M. Shanahan, and P. A. M. Mediano. Learning dynamics in
linear recurrent neural networks. In Forty-second International Conference on Machine
Learning, 2025. URL https://openreview.net/forum?id=KGOcrIWYnx.

N. Rahaman, A. Baratin, D. Arpit, F. Draxler, M. Lin, F. Hamprecht, Y. Bengio, and
A. Courville. On the spectral bias of neural networks. In International conference on
machine learning, pages 5301–5310. PMLR, 2019.

A. M. Saxe, J. L. Mcclelland, and S. Ganguli. Exact solutions to the nonlinear dynamics of
learning in deep linear neural network. In ICLR, 2014.

S. Tarmoun, G. França, B. D. Haeffele, and R. Vidal. Understanding the dynamics of
gradient flow in overparameterized linear models. In ICML, 2021.

Z.-Q. J. Xu, Y. Zhang, T. Luo, Y. Xiao, and Z. Ma. Frequency principle: Fourier analysis sheds
light on deep neural networks. arXiv preprint arXiv:1901.06523, 2019.

16 / 16

https://openreview.net/forum?id=KGOcrIWYnx

	Introduction
	Incremental Learning in Overparametrized Matrix Factorization
	conclusion
	References

	anm1: 
	1.81: 
	1.80: 
	1.79: 
	1.78: 
	1.77: 
	1.76: 
	1.75: 
	1.74: 
	1.73: 
	1.72: 
	1.71: 
	1.70: 
	1.69: 
	1.68: 
	1.67: 
	1.66: 
	1.65: 
	1.64: 
	1.63: 
	1.62: 
	1.61: 
	1.60: 
	1.59: 
	1.58: 
	1.57: 
	1.56: 
	1.55: 
	1.54: 
	1.53: 
	1.52: 
	1.51: 
	1.50: 
	1.49: 
	1.48: 
	1.47: 
	1.46: 
	1.45: 
	1.44: 
	1.43: 
	1.42: 
	1.41: 
	1.40: 
	1.39: 
	1.38: 
	1.37: 
	1.36: 
	1.35: 
	1.34: 
	1.33: 
	1.32: 
	1.31: 
	1.30: 
	1.29: 
	1.28: 
	1.27: 
	1.26: 
	1.25: 
	1.24: 
	1.23: 
	1.22: 
	1.21: 
	1.20: 
	1.19: 
	1.18: 
	1.17: 
	1.16: 
	1.15: 
	1.14: 
	1.13: 
	1.12: 
	1.11: 
	1.10: 
	1.9: 
	1.8: 
	1.7: 
	1.6: 
	1.5: 
	1.4: 
	1.3: 
	1.2: 
	1.1: 
	1.0: 
	anm0: 
	0.81: 
	0.80: 
	0.79: 
	0.78: 
	0.77: 
	0.76: 
	0.75: 
	0.74: 
	0.73: 
	0.72: 
	0.71: 
	0.70: 
	0.69: 
	0.68: 
	0.67: 
	0.66: 
	0.65: 
	0.64: 
	0.63: 
	0.62: 
	0.61: 
	0.60: 
	0.59: 
	0.58: 
	0.57: 
	0.56: 
	0.55: 
	0.54: 
	0.53: 
	0.52: 
	0.51: 
	0.50: 
	0.49: 
	0.48: 
	0.47: 
	0.46: 
	0.45: 
	0.44: 
	0.43: 
	0.42: 
	0.41: 
	0.40: 
	0.39: 
	0.38: 
	0.37: 
	0.36: 
	0.35: 
	0.34: 
	0.33: 
	0.32: 
	0.31: 
	0.30: 
	0.29: 
	0.28: 
	0.27: 
	0.26: 
	0.25: 
	0.24: 
	0.23: 
	0.22: 
	0.21: 
	0.20: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


