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Mysteries of deep learning

Why do simple neural network training algorithms (gradient 
flow/descent) find a global minimum of a non-convex loss 
function?

Why gradient flow/descent finds global minimum (among many) 
that generalizes well?
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From NTK regime to feature learning regime

• Neural Tangent Kernel (NTK) Regime [Jacot’18, Arora’19]: 
Extremely wide hidden layer, large initialization
– Exponential convergence toward the global minimum
– ≈“Kernel regression” with fixed kernel: Prevent feature learning

• From large to small init. scale: Kernel regime to rich regime
– Implicit bias in 𝐿-layer diagonal linear networks [Woodworth’20]:

• Inductive bias of small initialization 
– Diagonal linear networks [Woodworth’20, Vaskevicius’19]: 

Sparsity
– Matrix factorization [Soltanolkotabi’21, Li’21]: Low-rankness
– This work: Two-layer ReLU networks

𝑙! regularization 𝑙!/# regularization⟶ (decreasing init. scale) ⟶
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Two-layer ReLU nets under small init.: Prior work

Assumption on
Training data

Quantitative
Analysis?

Requirement on 
hidden-layer 

width

[Phuong’21]
𝜇-orthogonally separable

+
# of data ≥ dim of data

No 𝛀(1)

[Boursier’22] Mutually orthogonal data
(# of data ≤ dim of data) Yes Ω(exp((# of data))

Our work 𝝁−orthogonally
separable Yes 𝛀(1)

Phuong, M. and Lampert, H. C. The inductive bias of relu networks on orthogonally separable data. ICLR 2021
Boursier, E., Pillaud-Vivien, L., and Flammarion, N. Gradient flow dynamics of shallow relu networks for  square 
loss and orthogonal inputs. NeurIPS, 2022
Min, H., Mallda, E., and Vidal, R., Early Neuron Alignment in Two-layer ReLU Networks with Small Initialization. 
arXiv 2307.12851. 2023
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• (Data)               Input: 𝑥! ∈ ℝ" Label: 𝑦! ∈ +1,−1

Problem setting

Negative data
𝑦! = −1

Positive data
𝑦! = +1

Toy example in ℝ"5



• (Data)               Input: 𝑥! ∈ ℝ" Label: 𝑦! ∈ +1,−1

• (ReLU Network) NN 𝑥; 𝑤# , 𝑣# #$%
& = ∑#$%& 𝑣#𝜎 𝑥, 𝑤# , 𝜎 𝑢 = max{𝑢, 0}

Neurons: 𝑤# ∈ ℝ"

Problem setting

$#
$#

: normalized

neuron directions

Toy example in ℝ"5



• (Data)               Input: 𝑥! ∈ ℝ" Label: 𝑦! ∈ +1,−1

• (ReLU Network) NN 𝑥; 𝑤# , 𝑣# #$%
& = ∑#$%& 𝑣#𝜎 𝑥, 𝑤# , 𝜎 𝑢 = max{𝑢, 0}

• (Exponential Loss) ℒ 𝑤# , 𝑣# #$%
& = ∑!$%' exp −𝑦! 9 NN 𝑥!; 𝑤# , 𝑣# #$%

&

Problem setting

Toy example in ℝ"5



• (Initialization)        𝑤#(0)~𝒩 0, 𝜖(𝐼 𝑣#(0)~𝒩 0, 𝜖(

• (Training) gradient flow under small init. scale 𝜖
𝑑
𝑑𝑡 𝑤# = −∇)!ℒ,

𝑑
𝑑𝑡 𝑣# = −∇*!ℒ

Problem setting

Toy example in ℝ"5



Training under small initialization

• At initialization: All neurons have small norms, pointing toward 
random directions 

Small init.
scale
𝝐 = 𝟏×𝟏𝟎%𝟔

x: Positive data
x: Negative data
o: Neurons

Data/neuron positions Neuron directions Training Loss

Time (s)
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Training under small initialization

• First stage: Neurons keep small norms while aligning their 
directions with input data; No significant decrease in loss

Small init.
scale
𝝐 = 𝟏×𝟏𝟎%𝟔

x: Positive data
x: Negative data
o: Neurons
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Data/neuron positions Neuron directions Training Loss

Time (s)



Data/neuron positions Neuron directions Training Loss

Time (s)

Training under small initialization

• First stage: Neurons keep small norms while aligning their 
directions with input data; No significant decrease in loss

• Second stage: Neurons grow their norms, and the loss 
decreases quickly

Small init.
scale
𝝐 = 𝟏×𝟏𝟎%𝟔

x: Positive data
x: Negative data
o: Neurons
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Two-stage training

Time (s)

Loss ℒ
Changes in norm ∑$

%
%&

𝑤$
"

Changes in direction ∑$
%
%&

'!

'!

Neurons
𝑤', 𝑗 = 1,⋯ , ℎ Alignment Phase Final Convergence

Changes in 
norm Small Large until

loss is small
Changes in 
direction

Large until 
“good alignment” Small
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Two-stage training

Time (s)
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Changes in norm ∑$

%
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𝑤$
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Changes in direction ∑$
%
%&

'!

'!

Neurons
𝑤', 𝑗 = 1,⋯ , ℎ Alignment Phase Final Convergence

Changes in 
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Decompose neuron dynamics in alignment phase
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Gradient Flow 
dynamics
𝑑
𝑑𝑡
𝑤# = −∇)!ℒ

𝑑
𝑑𝑡 𝑣# = −∇*!ℒ

Neuron norm dynamics
𝑑
𝑑𝑡 𝑤#

(

Neuron angular 
dynamics
𝑑
𝑑𝑡

𝑤#
𝑤#

? ? ?



Decompose neuron dynamics in alignment phase
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Gradient Flow 
dynamics
𝑑
𝑑𝑡
𝑤# = −∇)!ℒ

𝑑
𝑑𝑡 𝑣# = −∇*!ℒ

Neuron norm dynamics
𝑑
𝑑𝑡 𝑤#

(

Neuron angular 
dynamics
𝑑
𝑑𝑡

𝑤#
𝑤#

Decoupled Neuron dynamics
𝑑
𝑑𝑡 𝑤# ≈ sign 𝑣# 0 I

!: ,",)! ./

𝑥! 𝑦! 𝑤#

𝜖-small init. scale

Technical assumption:
balanced weights
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Decompose neuron dynamics in alignment phase
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Gradient Flow 
dynamics
𝑑
𝑑𝑡
𝑤# = −∇)!ℒ

𝑑
𝑑𝑡 𝑣# = −∇*!ℒ

Neuron norm dynamics
𝑑
𝑑𝑡 𝑤#

( ≈ 2 I
!: ,",)! ./

𝑥! , 𝑤# 𝑦! 𝑤#

Neuron angular 
dynamics
𝑑
𝑑𝑡

𝑤#
𝑤#

Decoupled Neuron dynamics
𝑑
𝑑𝑡 𝑤# ≈ I

!: ,",)! ./

𝑥! 𝑦! 𝑤#

𝜖-small init. scale

Technical assumption:
balanced weights

𝑑
𝑑𝑡

𝑤'
! = 2

𝑑
𝑑𝑡
𝑤', 𝑤'



Decompose neuron dynamics in alignment phase
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Gradient Flow 
dynamics
𝑑
𝑑𝑡
𝑤# = −∇)!ℒ

𝑑
𝑑𝑡 𝑣# = −∇*!ℒ

Neuron norm dynamics
𝑑
𝑑𝑡 𝑤#

( ≲ 𝐶 𝑤#
(

Neuron angular 
dynamics
𝑑
𝑑𝑡

𝑤#
𝑤#

𝜖-small init. scale

Technical assumption:
balanced weights

𝑑
𝑑𝑡 𝑤'

!
= 2

𝑑
𝑑𝑡 𝑤', 𝑤'

Decoupled Neuron dynamics
𝑑
𝑑𝑡 𝑤# ≈ I

!: ,",)! ./

𝑥! 𝑦! 𝑤#



Decompose neuron dynamics in alignment phase
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Gradient Flow 
dynamics
𝑑
𝑑𝑡
𝑤# = −∇)!ℒ

𝑑
𝑑𝑡 𝑣# = −∇*!ℒ

Neuron norm dynamics
𝑑
𝑑𝑡 𝑤#

( ≲ 𝐶 𝑤#
(

Neuron angular dynamics
𝑑
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𝑤#
𝑤#

= 𝒫)!
0 I

!: ,",)! ./

𝑥! 𝑦!

𝜖-small init. scale

Technical assumption:
balanced weights

𝑑
𝑑𝑡

𝑤'
𝑤'

= 𝒫$#
( 1

𝑤'

𝑑
𝑑𝑡
𝑤'

Decoupled Neuron dynamics
𝑑
𝑑𝑡 𝑤# ≈ I

!: ,",)! ./

𝑥! 𝑦! 𝑤#



Neuron dynamics in alignment phase
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Neuron norm dynamics
𝑑
𝑑𝑡 𝑤#

( ≲ 𝐶 𝑤#
(

Neuron angular dynamics
𝑑
𝑑𝑡

𝑤#
𝑤#

= 𝒫)!
0 I

!: ,",)! ./

𝑥! 𝑦!

Neurons
𝑤', 𝑗 = 1,⋯ , ℎ Alignment Phase 

Changes in 
norm Small

Changes in 
direction

Large until 
“good alignment”

• Neuron norms are small at 
initialization, and so are derivatives. 
But they can only be small for a 

certain amount of time Θ log %
1



Neuron dynamics in alignment phase
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Neuron angular dynamics
𝑑
𝑑𝑡

𝑤#
𝑤#

= 𝒫)!
0 I

!: ,",)! ./

𝑥! 𝑦!

Neurons
𝑤', 𝑗 = 1,⋯ , ℎ Alignment Phase 

Changes in 
norm Small

Changes in 
direction

Large until 
“good alignment”

• Neuron norms are small at 
initialization, and so are derivatives. 
But they can only be small for a 

certain amount of time Θ log %
1

• Neurons move their directions 
towards a centroid

𝑥2 𝑤# = ∑!: ,",)! ./ 𝑥! 𝑦!

Neuron norm dynamics
𝑑
𝑑𝑡 𝑤#

( ≲ 𝐶 𝑤#
(



Neuron angular dynamics in alignment phase
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Neuron angular dynamics
𝑑
𝑑𝑡

𝑤#
𝑤#

= 𝒫)!
0 𝑥2(𝑤#) , 𝑥2 𝑤# = I

!: ,",)! ./

𝑥! 𝑦!

If 𝑥2(𝑤#) is fixed, then neuron 
rotates towards 𝑥2(𝑤#)

𝑥2(𝑤#)

𝒫)!
0 𝑥2(𝑤#)

𝑤$
𝑤$



Neuron angular dynamics in alignment phase
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Neuron angular dynamics
𝑑
𝑑𝑡

𝑤#
𝑤#

= 𝒫)!
0 𝑥2(𝑤#) , 𝑥2 𝑤# = I

!: ,",)! ./

𝑥! 𝑦!

𝑥2(𝑤#) depends on direction of 𝑤#, 
thus it is a moving target for 
the neuron 

(Early Alignment)



Neuron angular dynamics in alignment phase
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Neuron angular dynamics
𝑑
𝑑𝑡

𝑤#
𝑤#

= 𝒫)!
0 𝑥2(𝑤#) , 𝑥2 𝑤# = I

!: ,",)! ./

𝑥! 𝑦!

Once the neuron activates all positive 
data and none of the negative data, 
centroid 𝑥2 𝑤 remains fixed:
(Positive data center) 𝑥2 𝑤 = ∑!: 3"./ 𝑥! = 𝒙4

(Refined Alignment)



Break down alignment phase

Time (s)

Loss ℒ
Changes in norm ∑!

"
"#

𝑤!
$

Changes in direction ∑!
"
"#

%!
%!

Alignment phase can be further broken down into:

• (Early alignment) each neuron 𝑤$ chases a moving target 𝑥( 𝑤$ until activates all 
positive data and none of the negative data 

• (Refined alignment) each neuron 𝑤 aligns with the positive data center

First stage
(Alignment Phase) 

Second stage
(Final Convergence)
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Break down alignment phase

Time (s)

Loss ℒ
Changes in norm ∑!

"
"#

𝑤!
$

Changes in direction ∑!
"
"#

%!
%!

First stage
(Alignment Phase) 

Second stage
(Final Convergence)Θ log

1
𝜖

Early 
alignment

Refined 
alignment
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Early alignment

Time (s)

Loss ℒ
Changes in norm ∑!

"
"#

𝑤!
$

Changes in direction ∑!
"
"#

%!
%!

First stage
(Alignment Phase) 

Second stage
(Final Convergence)Θ log

1
𝜖

Early 
alignment

Refined 
alignment

Theorem (Informal) Early alignment lasts at most 𝒪 )*+ ,
-

time 

• 𝑛: # of data, 𝜇: “data separability” 
• Sufficient for final convergence  
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Refined alignment

Time (s)

Loss ℒ
Changes in norm ∑!

"
"#

𝑤!
$

Changes in direction ∑!
"
"#

%!
%!

First stage
(Alignment Phase) 

Second stage
(Final Convergence)Θ log

1
𝜖

Early 
alignment

Refined 
alignment

Proposition (Informal) If refined alignment lasts Θ .
, -

log .
/

time, then all 
neurons are 𝛿-close to positive/negative data center w.r.t. cosine distance

• Technical parts for showing this has been presented in [Boursier’22]
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Sufficiently small init. scale

Time (s)

Loss ℒ
Changes in norm ∑!

"
"#

𝑤!
$

Changes in direction ∑!
"
"#

%!
%!

Second stage
(Final Convergence)Θ log

1
𝜖

Early 
alignment

Refined 
alignment

𝒪
log 𝑛
𝜇

Θ
1
𝑛 𝜇 log

1
𝛿

• For the theoretical results to hold, we require a sufficiently small 𝜖

𝒪
log 𝑛
𝜇 + Θ

1
𝑛 𝜇 log

1
𝛿 ≤ Θ log

1
𝜖 ⟹ 𝜖 = 𝒪 exp −

1
𝑛 𝜇 (𝑛 log 𝑛 + log

1
𝛿)
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Conclusion

Time (s)

Loss ℒ
Changes in norm ∑!

"
"#

𝑤!
$

Changes in direction ∑!
"
"#

%!
%!

Second stage
(Final Convergence)Θ log

1
𝜖

Early 
alignment

Refined 
alignment

𝒪
log 𝑛
𝜇

𝒪
1
𝑛 𝜇 log

1
𝛿

Future work:
• Extends the analysis to general 

data assumptions
• Deep ReLU networks18


