
Gradient Flow Provably Learns Robust Classifiers for Orthonormal GMMs

INTRODUCTION
• NNs are often vulnerable to adversarial attacks
• [Pal et al., 2023]: If data is “localized”, robust 

classifiers exist without sacrificing clean acc

How can we find such robust classifiers
by training NNs?

PROVABLE VULNERABILITY OF RELU (PRIOR WORKS)  
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[Frei et al., 2023]:  Any limit point of GF/GD when training a ReLU 
network is non-robust against 𝒪(1/ 𝐾)-radius ℓ! attacks

 [Li et al., 2025]:  ReLU network trained by GD with small initialization: 
𝑓" 𝑥; 𝜃# ∝ 𝐹 𝑥 = 𝜎 𝑥, 𝜇$ − 𝜎 𝑥, 𝜇%

[Min and Vidal, 2024]:   𝐹 𝑥  is non-robust against 𝒪(1/ 𝐾)-attacks

Problem: train shallow networks for binary 
classification of data from orthogonal GMMs

Data: samples from balanced mix. of Gaussians 

 𝒩 𝜇", 𝛼!𝐼 ,⋯ ,𝒩 𝜇&! , 𝛼
!𝐼     𝐾" pos. clusters 
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!𝐼 ,⋯𝒩 𝜇& , 𝛼!𝐼  𝐾! neg. clusters 

Cluster centers: 𝜇", ⋯ , 𝜇& are orthonormal
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Loss: ℒ = ∑)("* ℓ(𝑦)𝑓+(𝑥); 𝜃)) 	ℓ: exp. or log. loss

Gradient flow (GF) with small initialization:

�̇� = −∇,ℒ, 𝜃(0) ≪ 1

pReLU network, 𝑝 ≥ 1; 𝜃:= 𝑤- , 𝑣- -
.
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#%! ,  𝜎: ReLU

PROBLEM

GRADIENT FLOW LEARNS CLASS CENTERS (P=1) OR CLUSTER CENTERS (P>2)

x  : Positive data   {𝑥): 𝑦) = +1}
x  : Negative data {𝑥): 𝑦) = −1}
⋅⋅⋅ : Cluster centers

o  : Neurons {𝑤-}

⎯  : Neuron directions
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Neurons 
visualized

at initialization

In initial GF training phase, neuron 𝒘𝒋 moves towards 𝒙 𝒑 (𝒘𝒋)
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Depending the value of 𝒑, neurons learn different directions
illustrative example:
𝛼 = 0, two +1 clusters 

𝑥 + (𝑤-)

𝑝 = 1: ReLU net
Neurons learn class centers 

𝑝 > 2: pReLU net
Neurons learn cluster centers 

Neurons 
visualized

at the end of 
training

• ReLU network is more vulnerable to 
ℓ! adversarial attacks than pReLU network

• Vulnerability of ReLU network persists even:
adding layers (MLP), 
or changing activations (Tanh) 

• Carefully chosen activations (pReLU) needed

PROVABLE ROBUSTNESS OF PRELU (OUR WORK)  

pReLU network (𝑝 > 2) trained by GF with small init. and small 𝛼	: 
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𝐹(+) 𝑥 	(𝑝 > 2) ≈	Bayes classifier ⟹ Robust against 𝓞(𝟏)-attacks: 
∀𝛿 ∈ (0, 2], over new sample 𝑥, 𝑦 ∈ ℝ>×{+1,−1}
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𝑑 𝑦 > 0 ≥ 1 − 2 𝐾 + 1 exp −
𝐶𝐷𝛿%
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Optimal robust classifier: clusters are separated by 2 distance

2/2 is the maximum achievable ℓ!-robustness w.o. clean acc drop  

Robustness

Optimality

Convergence
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Small Initialization: 
all neurons have 
small norms and 
random directions


