

Early Neuron Alignment in Two-layer ReLU Networks with Small Initialization Hancheng Min*, Enrique Mallada[†], René Vidal*

INTRODUCTION

Key result: Two-layer ReLU nets solve binary classification problems by learning features that align with class centers.

Prior work: existing theories are either

- restrictive (# of data, width of network),
- asymptotic (assume infinitely small initialization), or
- heuristics/qualitative (no formal convergence result).

This work: A complete, quantitative, and non-asymptotic convergence analysis for two-layer ReLU networks without restrictions on size of data/network.

PROBLEM SETTING

Problem: Training two-layer ReLU network for binary classification on orthogonally separable data

- Data with two classes: ${x_i, y_i}_{i=1}^n$: input $x_i \in \mathbb{R}^D$, label $y_i \in {+1, -1}$
- Two-layer ReLU Network:

$$f(x;\theta) = \sum_{j=1}^{h} v_j \operatorname{ReLU}(w_j^{\top} x), \theta \coloneqq \{w_j, v_j\}_{j=1}^{h}$$

- Classification Loss: $\mathcal{L}(\theta) = \sum_{i=1}^{n} \ell(y_i, f(x_i; \theta)), \ell \text{ is exp or logistic loss}$
- Gradient flow training: $\dot{\theta} = -\nabla_{\theta} \mathcal{L}(\theta), \theta(0) = \theta_0$ Assumptions:
- (critical) Small initialization: $\|\theta(0)\|_F = \mathcal{O}(\epsilon)$
- (technical) Balanced initialization: $||w_j(0)||_E^2 = v_j^2(0)$
- (critical) μ -orthogonally separable data ($\mu > 0$)

$$\cos(x_i, x_j) \begin{cases} \geq \mu & , y_i = y_j \\ \leq \mu & , y_i \neq y_j \end{cases}$$

*Center for Innovation in Data Engineering and Science, University of Pennsylvania, [†]Electrical and Computer Engineering, Johns Hopkins University

patterns $\{ sign(\langle x_i, w_j \rangle) \}$

orthogonally separable

JOHNS HOPKINS

of ENGINEERING