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Abstract
Deep learning-based classifiers are known to be
vulnerable to adversarial attacks. Existing meth-
ods for defending against such attacks require
adding a defense mechanism or modifying the
learning procedure (e.g., by adding adversarial
examples). This paper shows that for certain data
distributions one can learn a provably robust clas-
sifier using standard learning methods and without
adding a defense mechanism. More specifically,
this paper addresses the problem of finding a ro-
bust classifier for a binary classification problem
in which the data comes from an isotropic mix-
ture of Gaussians with orthonormal cluster cen-
ters. First, we characterize the largest ℓ2-attack
any classifier can defend against while maintain-
ing high accuracy, and show the existence of op-
timal robust classifiers achieving this maximum
ℓ2-robustness. Next, we show that given data from
the orthonormal Gaussian mixture model, gradi-
ent flow on a two-layer network with a polynomial
ReLU activation and without adversarial exam-
ples provably finds an optimal robust classifier.

1. Introduction
The vulnerability of neural networks to adversarial at-
tacks (Szegedy et al., 2014), i.e., perturbations to their
input that are typically human-imperceptible, has led to
numerous efforts in building defenses against these attacks
(Shafahi et al., 2019; Papernot et al., 2016; Wong et al.,
2019; Guo et al., 2018; Cohen et al., 2019; Levine & Feizi,
2020; Yang et al., 2020; Sulam et al., 2020; Kinfu & Vi-
dal, 2022). These defenses have been counteracted by new
adaptive attacks (Athalye et al., 2018; Carlini et al., 2019;
Croce & Hein, 2020), leading to new defenses and so on.
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Large Language Models are also susceptible to adversarial
attacks (Chao et al., 2023; Shah et al., 2023), leading to
undesired or harmful outputs, and the competition between
adversaries and defenders continues (Robey et al., 2023; Ji
et al., 2024). While such a competition allows us to design
more robust networks, it will not end unless many funda-
mental questions about adversarial robustness are answered.

One question is, what is the maximum adversarial perturba-
tion a neural network can tolerate? Many works on certified
robustness (Cohen et al., 2019; Fazlyab et al., 2020; Zhang
et al., 2018) aim to find a certified radius such that a neural
network can provably maintain a high prediction accuracy
for adversarial attacks within that radius. However, their
reported certified radii are often too small compared to what
can be achieved by practical defenses (Tramèr et al., 2018;
Guo et al., 2018; Gowal et al., 2020; Wu et al., 2020). Yet,
practical defenses come at the cost of computing adversarial
examples, or sophisticated model designs, mostly without
theoretical guarantees, except for the case of linear classi-
fiers (Zou et al., 2021). This also gives rise to an intriguing
question: Is it possible to find a robust network by standard
training methods without adversarial examples?

Note that this question might not always be well-defined.
For example, Dobriban et al. (2023); Javanmard et al. (2020)
prove that, for certain tasks, trade-offs between clean accu-
racy and adversarial robustness are unavoidable, hence the
notion of robust networks requires additional specifications
on how much accuracy one would sacrifice for robustness.
However, for tasks without such trade-offs, a robust clas-
sifier can be accurate on clean data while maintaining a
substantial level of robustness against adversarial attacks.
The existence of such a robust classifier is closely related to
data geometry. For instance, Pal et al. (2023; 2024) show
that if the data is localized, i.e., if the distribution of the data
given the class concentrates in a set of small volume, then a
robust classifier is guaranteed to exist. Moreover, they show
that a 2r separation (w.r.t. to some distance metric) between
the sets that contain each class-conditioned probability mass
is sufficient for the existence of a robust classifier against
attacks of radius r in the same distance metric. These results
motivate us to explore the following question: Can standard
training methods, without adversarial examples, provably
find a classifier for localized data that achieves maximum
robustness while maintaining good clean accuracy?
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Figure 1. Illustration of two clusters in
high-dimensions, each concentrated on
a (D− 1)-dimensional affine subspace
such that the subspaces are separated by
a Euclidean distance of

√
2.

Figure 2. Given mixture of Gaussian data with 12 positive clusters and 8
negative clusters (D = 2000), gradient descent (SGD, small initialization)
on (bias-free, width-200) two-layer ReLU network (ReLU) fails to find a
robust classifier. This issue persists after 1) increasing depth to 4 (MLP); 2)
(blindly) switching to another activation (Tanh); or 3) using a linear classifier
(LogReg). However, by choosing a suitable activation (pReLU, p = 3), GD
can find a nearly optimal robust classifier. Here, the plot emphasizes the im-
portance of choosing an appropriate function class (activation). Additional
experiments in Appendix B.2 highlight the importance of choosing proper
network parameterization and initialization.

In this paper, we show that for certain localized data distri-
butions, one can characterize the maximum robustness any
classifier can achieve based on how class-conditional prob-
ability masses are separated. We also show one can make
suitable architectural designs that exploit the data geometry
such that a nearly optimal robust classifier can be provably
learned by standard training, such as gradient flow (GF).

In what follows, we explain each one of these contributions
in more detail. Before that, we introduce our data model.

Orthonormal Gaussian Mixture Model. Consider a bal-
anced mixture of K Gaussians in RD, split into two classes:

N
(
µ1, α

2I/D
)
, · · ·,N

(
µK1

, α2I/D
)
, (Positive Class)

N
(
µK1+1, α

2I/D
)
, · · ·,N

(
µK , α2I/D

)
, (Negative Class)

where the cluster centers µ1, · · ·,µK ∈RD are othonormal,
α2 denotes the intra-cluster variance, and the data dimen-
sion D is sufficiently large. One can show that this mixture
of Gaussian distribution satisfies data localization and sepa-
ration properties similar to those studied in Pal et al. (2023),
thus a robust classifier is guaranteed to exist.

Maximum ℓ2-robustness. As illustrated in Figure 1 for the
case of two clusters (one from the positive class and one
from the negative class), the class-conditioned probability
masses concentrate around two (D−1)-dimensional affine
subspaces1 separated by a Euclidean distance of almost

√
2.

1To see this, start with the fact that the distribution N (µ, α2

D
I)

concentrates around a sphere of radius α, then use the result stating
that one can cover most masses of this high-dimensional sphere by
any set S that is a Minkowski sum of a O(1/

√
D)-radius ball and

a (D − 1)-dimensional affine subspace that contains the Gaussian
mean µ (one should think S being the inflated version of the affine
subspaces shown in Figure 1 with thickness O(1/

√
D)).

Based on this observation, our first set of results are:

Theorem (Proposition 1 & 2, informal). No classifier can
defend against an adversarial attack of ℓ2 radius

√
2
2 . How-

ever, one can construct a nearly optimal robust classifier
that can defend against attacks of radius arbitrarily close
to

√
2
2 when D is sufficiently large.

Our results show that data localization and separation are
important properties in understanding the maximum achiev-
able robustness for a classifier. Moreover, we will show that
the classifier we construct is the Bayes optimal classifier
w.r.t. the 0-1 loss, which operates as a nearest-cluster rule:
classifiers that exploit the multi-cluster data structure are
naturally and optimally robust.

Learning optimal robust networks. So far everything
seems to be intuitive and straightforward given the fairly
simple distributional assumption. However, issues arise
when one does not know the data distribution a priori and
seeks a classifier by training a neural network on sampled
data via gradient descent (GD). As Figure 2 suggests, a
trained ReLU network fails to find a classifier with the same
level of robustness as the Bayes classifier (which indeed can
defend against attack of radius∼

√
2
2 , as our results suggest).

This matter is first discussed by Frei et al. (2023), where
they show that any two-layer ReLU network trained by GD
under data samples from orthonormal Gaussian mixture is
non-robust against adversarial attacks of ℓ2-radius Θ

(
1√
K

)
,

where K is the total number of clusters. Later, Min & Vidal
(2024) show that this issue is caused by the fact that a ReLU
network fails to learn, internally with its weight parameters,
the multi-cluster structure of the data distribution, even if
the sampled data points are revealing such a structure, and
a convergence analysis of GD in Li et al. (2025) theoreti-

2



Gradient Flow Provably Learns Robust Classifiers for Orthonormal GMMs

cally supports this argument. Therefore, while the structural
property of the data distribution allows one to construct
an optimal robust classifier, gradient descent algorithms on
neural networks may struggle to learn these key properties,
leading to non-robust classifiers.

To address this issue, Min & Vidal (2024) propose to change
the activation. More specifically, replacing the ReLU activa-
tion with a polynomial ReLU activation (pReLU) with poly-
nomial degree p as a hyperparameter (defined later in (5)).
They empirically show that when p is large, the pReLU
network can internally learn the data structure, leading to
a more robust classifier. However, a rigorous analysis of
convergence is not provided. Our second set of results is to
develop a full convergence analysis for gradient flow on a
two-layer pReLU network and show that:

Theorem (Theorem 1 & Corollary 1, informal). When the
intra-cluster variance α2 is sufficiently small, gradient flow
on pReLU networks (5) with p > 2 converges to a nearly
optimal robust classifier.

Our result is based on prior works on gradient de-
scent/flow with small initialization on two-layer ReLU net-
works (Maennel et al., 2018; Phuong & Lampert, 2021;
Boursier et al., 2022; Kumar & Haupt, 2024; Chistikov
et al., 2023; Wang & Ma, 2023; Min et al., 2024) and we
extend their convergence analyses to pReLU networks. We
show how the implicit bias (Vardi, 2023) of the gradient
flow dynamics critically depends on a careful choice of ac-
tivation function, allowing the network to learn accurately
the underlying data structure, which, as we have discussed,
is essential for finding a robust classifier.

Notation. We denote the inner product between vectors x
and y by ⟨x,y⟩ = x⊤y, and the cosine of the angle be-
tween them as cos(x,y) = ⟨ x

∥x∥ ,
y

∥y∥ ⟩. For an n×m matrix
A, we let ∥A∥ and ∥A∥F denote the spectral and Frobenius
norm of A, respectively. We define 1A as the indicator for
a statement A: 1A = 1 if A is true and 1A = 0 otherwise,
and define [·]+ := max{·, 0}. We also letN (µ,Σ2) denote
the normal distribution with mean µ and covariance matrix
Σ2, and Unif(S) denote the uniform distribution over a set
S. Lastly, we let [N ] denote the integer set {1, · · · , N} and
let SD−1 be the unit-sphere in RD.

2. Optimal Robust Classifiers for Orthonormal
Gaussian Mixture

We start by studying the optimal robust classifiers for or-
thonormal Gaussian Mixture.

Orthonormal Gaussian Mixture Model. We study a bal-
anced mixture of K Gaussians, with K1 of them belonging
to the positive (+1) class and K2 := K −K1 of them be-
longing to the negative (−1) class. Formally, consider a tu-

ple of random variables (X,Y, Z) on RD×{+1,−1}× [K]
representing observed data, observed class label, and latent
cluster membership, respectively, defined as follow:

Z ∼ Unif({1, · · · ,K}),
X|Z ∼ N

(
µZ , α

2I/D
)
, Y |Z = 1Z≤K1

− 1Z>K1
, (1)

where the µ1, · · · ,µK , called cluster centers, are a set
of orthonormal vectors in RD, i.e. ⟨µk,µl⟩ = 1l=k. We
denote the marginal distribution of the (X,Y ) pair byDX,Y ,
and use (x, y) to denote a sample from DX,Y .

ℓ2-robust classifier for DX,Y . Our interest is to find a
classifier that not only accurately predicts the label y given
an observed data x, but does so in a way that is robust to
some additive adversarial attacks on x. Specifically, we
seek a classifier f : RD → R such that given a sample
(x, y) from DX,Y , with high probability, we have f(x)y >
0, which suggests that sign (f(x)) correctly predicts the
label y; Moreover, we require that for some r > 0, f is
robust to additive adversarial attacks of ℓ2-norm radius r,
i.e., min∥d∥≤1 f(x+ rd)y > 0 with high probability over
sample (x, y). This suggests that sign (f(x+ rd)) still
makes a correct prediction on y even though x has been
corrupted by some attack rd. Ideally, we want a classifier
that is robust to attack of radius r, with as large r as possible.

Maximum achievable ℓ2-robustness. Inevitably, any clas-
sifier fails to be robust if the adversary has too much power,
i.e., the attack radius r exceeds some value. Indeed, for
the data distribution DX,Y of our interest, no classifier can
defend against attacks of radius

√
2
2 , as shown below:

Proposition 1. Let f : RD → R be any Lebesgue
measurable function such that the random variable
min∥d∥≤1

[
f
(
x+

√
2
2 d
)
y
]

is also measurable. Given a

sample (x, y) ∼ DX,Y , we have

P

(
min
∥d∥≤1

[
f

(
x+

√
2

2
d

)
y

]
≤0

)
≥min{K1,K2}

K
. (2)

We refer the readers to Appendix C.1 for the proof. We ex-
plain Proposition 1 from a geometric perspective, expanding
upon the discussion in the introduction: Consider data from
two clusters N

(
µ1,

α2

D I
)

and N
(
µ2,

α2

D I
)

corresponding
to different classes. As shown in Figure 1, when ambient
dimension D is large, we expect that each cluster concen-
trates around a D − 1 affine subspace that is orthogonal to
the vector µ1−µ2. Most importantly, the distance between
these two affine subspaces is

√
2, suggesting that given any

decision boundary that separates two affine subspaces, an
adversary can perturb a substantial portion of the probability
mass of these clusters to cross the boundary with an attack
radius

√
2
2 . The same argument holds for K-clusters, where

any pair of clusters is separated by a Euclidean distance
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√
2. We also note that extending Proposition 1 to attacks in

another metric amounts to measuring this separation in that
metric. Our second result shows the Bayes optimal classifier
w.r.t. the 0-1 loss is also nearly optimally robust:
Proposition 2. The Bayes optimal classifier w.r.t. the 0-1
loss is sign (f∗(x)), where

f∗(x)=

K1∑
k=1

exp

(
D ⟨x,µk⟩

α2

)
−

K∑
k=K1+1

exp

(
D ⟨x,µk⟩

α2

)
.

Moreover, given a sample (x, y) ∼ DX,Y , we have, for any
2
√
2α2 logK

D ≤ ν ≤
√
2,

P

(
min
∥d∥≤1

[
f∗

(
x+

√
2− ν

2
d

)
y

]
> 0

)

≥ 1− 2K exp

(
−Dν2

64α2

)
. (3)

We refer the readers to Appendix C.2 for the proof. If we

pick ν = Θ
((

α2

D

) 1
4
)

in Proposition 2, then the result shows

that f∗ is robust against attacks of radius
√
2
2 −Θ

((
α2

D

) 1
4
)

with probability at least 1 − O
(
K exp

(
−
(
D
α2

) 1
2
))

over
new sample from DX,Y . Therefore, f∗ is nearly optimal
robust when α2

D = o(1), i.e., the ambient dimension is large
or the intra-class variance is small.

Interpreting f∗ as a nearest-cluster rule. One can show
that (please see Appendix C.2 for the derivation)

sign (f∗(x))=sign
(

max
1≤k≤K1

⟨x,µk⟩− max
K1+1≤k≤K

⟨x,µk⟩

+O
(α2

D
logK

))
. (4)

When the error O
(
logK α2

D

)
is small, the Bayes classifier

f∗(x) finds the closest cluster center to x and outputs the
label to that cluster, which is a nearest-cluster rule. There-
fore, by respecting the multi-cluster structure of DX,Y , f∗

achieves the maximum ℓ2-robustness.

So far we have shown that a nearly optimal robust classi-
fier for DX,Y can be easily constructed as a nearest-cluster
rule. However, as we discussed in the introduction, gra-
dient descent algorithms with sampled data often fail to
find a classifier with the same level of robustness. Next,
we address the problem of finding a nearly optimal robust
classifier by gradient flow dynamics.

3. Optimal Robust Classifiers Obtained via
Gradient Flow

In this section, we aim to find a nearly optimal ℓ2-robust
classifier for DX,Y by vanilla gradient descent without ad-
versarial training. We start by stating the problem of training

two-layer networks with gradient flow. Then we show that
with a pReLU activation, gradient flow provably finds a
classifier that is nearly optimal ℓ2-robust.

3.1. Preliminaries: training on two-layer networks for
orthonormal Gaussian mixture

pReLU network. We consider a two-layer pReLU net-
work (Min & Vidal, 2024), which is defined as follows:

f (p)(x;θ)=

h∑
i=1

vj
σp(⟨x,wj⟩)
∥wj∥p−1

(θ :={wj , vj}hj=1) . (5)

Note that f (p) can be viewed as a generalized version of the
ReLU network. When p = 1, f (1) is exactly a two-layer
ReLU network. When p > 1 and that x is approximately
unit-norm, the output of the hidden activation is approxi-
mately equal to the one of the ReLU network multiplied
by cosp−1(x,wj) (Min & Vidal, 2024), which discourages
large angle separation between data x and neuron wj .

ℓ2-loss function and balanced dataset. Given a dataset
{xi, yi}ni=1, define the loss function as L(θ; {xi, yi}ni=1) =∑n

i=1 ℓ(yi, ŷi), where ŷi = f (p)(xi;θ). For classification
problems, the typical choice for ℓ is the exponential loss
exp(−yŷ), or the logistic loss log(1 + exp(−yŷ)). Most
of our theoretical analysis works for these choices for ℓ.
However, using classification losses poses additional chal-
lenges in analyzing the late phase of the training (details
explained in later sections). Therefore, our theorem consid-
ers the ℓ2-loss: ℓ(y, ŷ) = 1

2∥y − ŷ∥2, and the extension to
classification losses is discussed in Appendix A.

As for the dataset, since DX,Y samples data with equal
probability from each cluster, there are approximately equal
number of samples from each cluster when we sample a
large number of data. Therefore, instead of considering
a dataset directly sampled from DX,Y , we consider the
following balanced dataset D̂ = {xi, yi}KN

i=1 , where

xi ∼ N
(
µk, α

2I/D
)
, yi = 1k≤K1 − 1k>K1 ,

(k − 1)N + 1 ≤ i ≤ kN, 1 ≤ k ≤ K . (6)

We call this dataset balanced because D̂ has exactly N sam-
ples from each cluster N (µk, α

2I/D). This assumption
allows us to omit the additive perturbations in our analysis
introduced by imbalanced per-cluster sample size.

Gradient flow with small and balanced initialization.
Given the network parametrization θ and the loss function L
constructed from a balanced dataset D̂, we consider training
the network by the following gradient flow dynamics2:

θ̇ = −∇θL(θ; D̂), θ(0) = θ0 , (7)

2Note that we focus on pReLU network with p > 2. Therefore,
the network f (p) differentiable everywhere w.r.t. θ, and so is L.
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We assume the initialization θ(0) is ϵ-small and balanced,
formally defined as the following.

Assumption 1 (ϵ-small and balanced initialization). The
initialization θ(0) = {wj(0), vj(0)}hj=1 satisfies the follow-
ing: there exists an initialization shape {wj0, vj0}hj=1 with
Wmin ≤ ∥wj0∥ ≤ Wmax,∀j, for some Wmin,Wmax > 0
and an initialization scale ϵ > 0 such that

wj(0) = ϵwj0, vj(0) = ϵvj0, ∥wj0∥ = |vj0|,∀j . (8)

Under a balanced initialization, we have ∥wj(0)∥ =
|vj(0)|,∀j, and this balancedness holds throughout the GF
trajectory (See Appendix E.1): ∥wj(t)∥ = |vj(t)|,∀j. The
balancedness between wj and vj allows us to focus on the
dynamics of wj , which has been a common assumption in
prior work of this type (Maennel et al., 2018; Boursier et al.,
2022; Chistikov et al., 2023; Min et al., 2024). Readers may
view this assumption as made out of convenience, but we
think it is essential for a tractable analysis, and at the same
time, the theoretical results out of this assumption match the
empirical results when no balancedness is enforced (Min
et al., 2024). Moreover, this assumption allows for an ele-
gant interpretation of the dynamics of wj (Maennel et al.,
2018; Boursier & Flammarion, 2024) as searching for some
directions that maximize its alignment with the data.

Given a balanced initialization, one can show that
sign(vj(t)) = sign(vj(0)),∀j,∀t ≥ 0 (Boursier et al.,
2022). Roughly speaking, this means that sign(vj(0))
determines the dynamical behavior of neuron wj under
gradient flow: neurons with sign(vj(0)) = +1 tend to
align its direction with one of the positive cluster centers,
µk, k = 1, · · · ,K1, and those with sign(vj(0)) = −1
tend to align with one of the negative cluster centers. For
this reason, we define the following neuron index sets:
N+ := {j ∈ [h] : sign(vj(0)) = +1} and N− := {j ∈
[h] : sign(vj(0)) = −1}.

3.2. Main results: pReLU (p > 2) provably finds
(near)-optimal robust classifiers

pReLU classifier and the conjecture. Min & Vidal (2024)
study the adversarial robustness of the following pReLU
classifier (a particular case of f (p)(x;θ) for a choice of θ):

F (p)(x) =

K1∑
k=1

σp(⟨x,µk⟩)−
K∑

k=K1+1

σp(⟨x,µk⟩) , (9)

and show that F (p) with p > 2 is robust to adversarial
attacks of ℓ2 radius arbitrarily close to

√
2
2 when D

α2 is large.3

They conjecture that when p is large and the intra-cluster
variance α2 is small, the gradient flow on pReLU network

3To provide our view on why F (p) is robust, we show in Ap-
pendix D that it behaves like a nearest-cluster rule for large p.

f (p)(·;θ) with small initialization finds a classifier that is
close to F (p) up to a constant scaling factor. Then they argue
that such proximity to F (p) implies that the trained network
has the same level of robustness as F (p). Our main results
in Section 3.2.2 fully prove this conjecture with p > 2.

Remark 1. Min & Vidal (2024) also conjecture that GF on
a ReLU network (p = 1) finds a classifier that is not robust
against adversarial attacks of ℓ2-radius Θ

(
1√
K

)
, which is

later proved by Li et al. (2025). As extensively discussed in
both works, the main reason why a trained ReLU network is
not robust is because of its inability to learn the multi-cluster
structure of DX,Y via GD/GF.

Closeness to F (p) implies robustness. We first show that
given any classifier f that is positively homogeneous of
degree 1 w.r.t. x and is close to F p in terms of some distance
measure, it is nearly optimal robust when the intra-class
variance is small (We refer to Appendix D for the proof.).

Proposition 3. Let p > 2. Given a classifier f that satisfies
f(γx) = γf(x), ∀x ∈ RD, ∀γ > 0 and dist(f, F (p)) =
infc>0 supx∈SD−1 |cf(x) − F (p)(x)| ≤ ν for some 0 <

ν ≤
(√

2
8

)p
. Then for a sample (x, y) ∼ DX,Y , we have

P

(
min
∥d∥≤1

[
f

(
x+

√
2− 8ν

1
p

2
d

)
y

]
>0

)

≥ 1− 2K exp

(
− Dν

2
p

2K2α2

)
− 4 exp

(
− 3

8α2

)
. (10)

Given this result, it remains to show that gradient flow finds
a network f (p)(·;θ) (which is positively homogeneous of
degree 1) that is close to F (p) in the distance measure de-
fined above. We will first discuss an additional assumption
required on the initialization, then state our main result.

3.2.1. NON-DEGENERATE INITIALIZATION SHAPE

To properly define a non-degenerate initialization shape, we
need to define a radial Voronoi tessellation of RD−1 \ {0}
given a tuple of unit-norm vectors {µk}k∈K.

Definition 1. Given a set of unit-norm vectors {µk}k∈K,
define the following

Rk :=
{
w∈RD−1 \ {0} |

[cos(µk,w)]+ > [cos(µl,w)]+,∀l ̸= k} , k ∈ K,
(Voronoi regions)

R◦ :=
{
w∈RD−1 \ {0} | [cos(µk,w)]+ = 0,∀k ∈ K

}
.

(Void region)

From this definition, it is clear thatRk, k ∈ K andR◦ are
disjoint subsets of RD−1 \ {0}. We are ready to define a
non-degenerate initialization shape:
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Definition 2 (Non-degenerate initialization shape). Given
a set of unit-norm vectors {µk}k∈K, let {Rk}k∈K andR◦

be their Voronoi and void regions, as per Definition 1. A set
of initialization shape {wj0}j∈N is non-degenerate w.r.t.
{µk}k∈K if there exist disjoint subsets {Nk}k∈K,N ◦ ofN ,
such that N = (

⋃
k∈KNk) ∪N ◦ and

• (Neurons must be within one of the regions)
wj0 ∈ Rk,∀k ∈ Nk; wj0 ∈ R◦,∀k ∈ N ◦;

• (Non-void regions must contain at least one neuron)
Nk ̸= ∅,∀k ∈ K.

Moreover, we let d(w, S) = 1− sups∈S,s ̸=0 cos(w, s) and
define non-degeneracy gap:

∆ := min
{

min
j∈

⋃
k∈K

Nk

d
(
wj0, ∂

( ⋃
k∈K

Rk

))
,

min
j∈N◦

d
(
wj0, ∂R◦

)}
. (11)

Whenever a vector w falls into one of theRk, it means that:
1) the angle between w and the corresponding µk is less
than π

2 ; and 2) compared to all other µs, µk is the closest
(in angle) to w. This suggests that neurons initialized within
someRk converge to the corresponding µk under GF, and
those initialized within R◦ stay in R◦. This is indeed the
case, as we will see in Section 3.2.3.

The special case when a neuron is exactly initialized on the
boundary of these Voronoi regions ∂

(⋃
k∈KRk

)
cannot be

analyzed since if a neuron has equal angular distance to two
µ vectors, there is no way to determine which µ vector it
converges to under GF with sampled data around these µ
vectors. Similarly, if a neuron is initialized at the bound-
ary between someRk andR◦, then we can not determine
whether it converges to µk, or it falls into the interior ofR◦

and stays there after that. Therefore we require an initializa-
tion shape with a positive non-degeneracy gap. Moreover,
everyRk must contain one neuron, ensuring the correspond-
ing µk gets learned. This leads to our assumption:
Assumption 2. (The initialization has a non-degeneracy
gap of at least ∆) ∃∆ > 0 such that {wj0}j∈N+ is non-
degenerate w.r.t. {µk}1≤k≤K1 with a non-degeneracy gap
of at least ∆, and {wj0}j∈N− is non-degenerate w.r.t.
{µk}K1≤k≤K with a non-degeneracy gap of at least ∆.

As one can see, this condition is stated per class: Positive
(Negative) neurons must be initialized to be non-degenerate
w.r.t. cluster centers from the positive (negative) class, and
we have disjoint subsets {Nk}1≤k≤K1 ,N ◦

+ of N+ (disjoint
subsets {Nk}K1+1≤k≤K ,N ◦

− of N−). As suggested in our
previous discussion, we show that (See Section 3.2.3) under
GF, all neurons in Nk converge in angle to µk, which is an
essential part of our theoretical results. We also let Nc :=
N ◦

+ ∪ N ◦
− contain indices of neurons that are initialized

within the void region.

Figure 3. Illustration of a non-degenerate initialization shape
{w10,w20} w.r.t. two orthonormal vectors {µ1,µ2}.

3.2.2. CONVERGENCE OF PRELU (p > 2) ON
ORTHONORMAL GAUSSIAN MIXTURE

Now we are ready to state our main theorem:

Theorem 1 (pReLU converges to optimal robust classifier
for orthonormal Gaussian mixture). Let p > 2. Given
0 ≤ δ ≤ 1 and a sufficiently small α2

0, assume the
intra-cluster variance, the data dimension, and per-cluster
sample size satisfy that α2 ≤ α2

0, D ≥ Ω̃(α−2
0 ) and

Ω̃(α−2
0 ) ≤ N ≤ õ(exp(α−2

0 )), respectively. Suppose that
the initialization θ(0) is balanced, ϵ-small (Assumption
1) with ϵ = Θ̃

(
α8K
0

)
, and satisfies Assumption 2 with a

non-degeneracy gap ∆ = Θ(1). Then with probability at
least 1− δ, the GF dynamics (7) with a sampled balanced
dataset D̂ = {xi, yi}KN

i=1 , starting from θ(0), has its solu-

tion θ(t) satisifying that: for some t∗ = Õ
(
log 1

α0

)
and

T ∗=Θ̃
(
log 1

α0

)
+Ω̃

(
α
−min{p−2,2}
0

)
with [t∗, T ∗] ̸= ∅, we

have L(θ(t))=Õ(α4
0),∀t∈ [t∗, T ∗], and

sup
t∈[t∗,T∗]

sup
x∈SD−1

∣∣∣f (p)(x;θ(t))− F (p)(x)
∣∣∣≤Õ(α2

0

)
. (12)

Ω̃, õ, Õ hide logarithmic factor log K
δ and constant factors

that depend on p (in the worst case, 2p). Theorem 1 formally
proves the conjecture in Min & Vidal (2024), showing that
GF on pReLU networks finds a robust classifier for orthonor-
mal Gaussian mixture. Notably, the smaller the intra-cluster
variance α0 is, the closer the network f (p)(·;θ) is to F (p),
which is observed numerically in Min & Vidal (2024).

We organize the subsequent discussions as follows: First,
we state several remarks on understanding our main result
and comparing it with prior work; Then we conclude with
technical discussions on its proof sketch in Section 3.2.3.
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Nearly optimal robust classifier via GF. The major impli-
cation of Theorem 1 is that one can find a nearly optimal
ℓ2-robust classifier by GF without adversarial examples.
When the intra-cluster variance α2 is small, along the GF
trajectory there exists a f (p)(·;θ(t)) that is Õ(α2

0) close to a
nearly optimal ℓ2-robust classifier F (p), and such proximity
to F (p) implies the same level of ℓ2-robustness, as shown
in Proposition 3. We can immediately conclude that f (p) is
also nearly optimal ℓ2-robust:

Corollary 1 (Nearly optimal ℓ2-robustness). Given any
f (p)(·;θ(t)) obtained at t ∈ [t∗, T ∗] from Theorem 1, it can

defend against adversarial attacks of radius
√
2
2 − Õ

(
α

2
p

0

)
with probability 1 − Õ(exp(−α−2

0 )) over a new sample
(x, y) ∼ DX,Y , thus nearly optimal ℓ2-robust for DX,Y .

Comparison with prior work: robust classifier for or-
thonormal Gaussian mixture. The problem of finding
a robust classifier for data drawn from orthogonal cluster
centers was initiated by Frei et al. (2023), who show the-
oretically that any classifier obtained by gradient descent
on a two-layer ReLU network is susceptible to an adver-
sarial attack of ℓ2-radius O

(
1√
K

)
, even though one can

easily construct a ReLU network that is robust to attacks
of radius Θ(1)4. Then Min & Vidal (2024) explain this
non-robustness issue with ReLU networks from a neural
alignment perspective (Maennel et al., 2018; Boursier &
Flammarion, 2024). They propose to replace the ReLU net-
work by the pReLU, f (p)(·;θ), conjecture that training the
pReLU with samples from DX,Y leads to a classifier that
is close to F (p) when the intra-cluster variance α2 is small,
and provide empirical validation for their conjecture. Our
work takes one step further to theoretically prove the con-
vergence to F (p) under GF, and also show that the achieved
ℓ2-robustness is nearly optimal. Also, a small initialization
is critical for finding a robust classifier: since our data is
approximately low-dimensional, adversarial examples exist
if the initialization scale is large (Melamed et al., 2024),
which is verified by our numerical results in Appendix B.2.

Comparison with prior work: GF with small initializa-
tion. Over the past year, gradient descent/flow with small
initialization has been studied for both linear networks (Gu-
nasekar et al., 2017; 2018; Arora et al., 2019a; Woodworth
et al., 2020; Gidel et al., 2019; Jacot et al., 2021; Stöger
& Soltanolkotabi, 2021; Jin et al., 2023; Xu et al., 2025)
and nonlinear networks (Maennel et al., 2018; Phuong &
Lampert, 2021; Boursier et al., 2022; Kumar & Haupt, 2024;
Chistikov et al., 2023; Wang & Ma, 2023; Min et al., 2024;
Tsoy & Konstantinov, 2024; Zhu et al., 2025), to understand
the implicit bias of gradient descent algorithms towards
structurally simple networks, as opposed to those in the

4Frei et al. (2023) consider data from N (
√
Dµk, α

2I), thus
their results should be rescaled by 1√

D
when applied to DX,Y .

large initialization regime (Jacot et al., 2018; Chizat et al.,
2019; Lee et al.; Woodworth et al., 2020; Luo et al., 2021;
Min et al., 2021; Du et al., 2019; Arora et al., 2019b). Our
analysis follows the line of work on two-layer ReLU net-
works, as we will explain in Section 3.2.3 in detail, and
improves upon it by considering a more complicated dataset.
Specifically, the GF on two-layer ReLU networks has been
studied for orthogonally separable data (Phuong & Lampert,
2021; Min et al., 2024; Chistikov et al., 2023), that is, data
with the same (different) label has positive (negative) corre-
lation, for mutually orthogonal data (Boursier et al., 2022),
and for positively correlated data (but only with two data
points) (Wang & Ma, 2023). Our data assumption is clos-
est to mutually orthogonal data (Boursier et al., 2022), but
considers a non-zero intra-cluster variance. In addition, we
consider a pReLU activation function, whose inductive bias
is significantly different than that of ReLU (We elaborate
this point in Section 3.2.3).

Limitations of our current result. One of the weaknesses
of Theorem 1 is that random initialization does not satisfy
Assumption 2 (Nonetheless, we experimentally verify in
Appendix B.1 that GF/GD still converges to the robust clas-
sifier from random initialization): Since the non-degeneracy
gap is defined by inner products between neurons and cluster
centers, one can show that under random initialization, the
non-degeneracy gap is ∆ = O( 1√

D
) with high probability,

while the theorem requires a Θ(1) gap. We have discussed
this issue when we define non-degenerate initialization in
Section 3.2.1: When neurons are initialized close to the
boundary between one Voronoi regionRk and anotherRl

(which is the case under random initialization), whether they
align with µk or with µl will depend on the points actually
sampled in the data set. In this regard, at the very initial
stage of GF there is a “burn-in” phase during which neu-
rons “choose” their target clusters depending on the samples.
Once the neurons have moved away from the boundary of
these Voronoi regions with gap ∆ = Θ(1), we characterize
the GF dynamics by Theorem 1. In Appendix A, we elabo-
rate on why this “burn-in” phase is challenging to analyze
and discuss several additional technical limitations.

Remark 2. The goal of this paper is to understand the-
oretically the problem of learning a robust classifier for
orthonormal Gaussian mixture via GF. Thus, we focus on
proving rigorous theorems and discussing the associated
technical challenges. For the practical implications of this
problem, we refer the reader to Min & Vidal (2024); Li et al.
(2025), where they empirically validate that in some transfer
learning settings, the training problem is related to learning
robust classifiers for orthonormal Gaussian mixture. For-
mally establishing these connections is an interesting future
research direction.
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Figure 4. Important quantities (alignment and weight norms) and their dynamics long GF trajectory

3.2.3. PROOF SKETCH

For simplicity, we consider the case α2 = α2
0 and use α2

throughout this section. The discussion is conditioned on
a good event (has at least 1− δ probability) when samples
are concentrated around their respective cluster centers.

Overall proof. Our proof in spirit is close to that of Boursier
et al. (2022), with a two-phase analysis of the GF focus-
ing on different quantities. Specifically, at the initial phase,
called alignment phase, one studied the dynamics of the
neuron direction wj

∥wj∥ through cosine angles between wj

and cluster center µk, where one shows that, for all k and
j ∈ Nk, we have that ckj := cos (µk,wj) monotonically
increases until it reaches 1 − Õ(α2). That is, as we men-
tioned earlier, neurons initialized within Rk converge in
angle to the corresponding µk. Then in the second conver-
gence phase, we show that all ckj can probably stay above
1− Õ(α2) until T ∗, and in the meantime, the norm of the
neurons (measured by

∑
j∈Nk

∥wj∥2 for each k) monotoni-
cally grows until it reaches 1± Õ(α2) before t∗. Moreover,
the norm of the neurons initialized in the void region stays
small:

∑
j∈Nc

∥wj(t)∥ = õ(α2). These three conditions
ckj ≥ 1 − Õ(α2),

∣∣1 − ∑j∈Nk
∥wj∥2

∣∣ ≤ Õ(α2) and∑
j∈Nc

∥wj∥ = õ(α2) together imply the desired bound
between f (p) and F (p). See Figure 4 for an illustration.

Alignment phase. (See Appendix F) The alignment phase is
the time interval between 0 and some Õ

(
log 1

ϵ

)
time, where

ϵ is the initialization scale. During the alignment phase, the
norms of the weights stays Õ(ϵ) small, which follows a
similar proof in Boursier et al. (2022); Min et al. (2024).
The small norm of the weights, together with the positive
non-degeneracy gap assumption, allows for the following
characterization of the alignment for 1 ≤ k ≤ K, j ∈ Nk:

d

dt
ckj ≥ Cpcp−1

kj (1− c2kj)

+Õ
(

α√
N

+
α√
D

)
+Õ

(
α2+

α√
D

)
+Õ (ϵ), (13)

for some constant C > 0. Consider the case when
α = 0, and ϵ → 0, for j ∈ Nk, the dynamics d

dtckj ≥
Cpcp−1

kj (1− c2kj) characterize the nominal effect of cluster
centers µk, 1 ≤ k ≤ K on neuron direction wj

∥wj∥ : each
cluster centers is either attracting or repelling wj

∥wj∥ , depend-
ing on whether their label matches the sign of vj , and the
aggregate effect is pushing wj

∥wj∥ towards µk, the closest
cluster center to wj in angle at initialization. We call the
k-th cluster the target cluster for wj .

The rest of the terms are considered perturbations due to
noisy samples around cluster centers and a non-zero initial-
ization scale: The first Õ (α/

√
N + α/

√
D) term is due to the

noisy samples from (the target) k-th cluster. Since we have
a ∆ = Θ(1) non-degeneracy gap, wj has a positive inner
product with every sampled data within the k-th cluster,
then one can utilize concentration results to bound the effect
of noise. The second Õ

(
α2 + α/

√
D
)

term is due to the
noisy samples from other non-target clusters. Unfortunately,
we have no control over how many of them have positive
inner products with wj , thus a worse bound Õ

(
α2
)

is de-
rived. Lastly, Õ (ϵ) is due to an ϵ-small weight norm. With
N = Ω̃(α−2) samples, D = Ω̃(α−2) dimension, and small
ϵ, the dominant terms become Õ

(
α2
)
, allowing us to prove:

Proposition 4 (Alignment in pReLU network). Given
the same assumptions as in Theorem 1 and consider the
same GF solution θ(t), t ≥ 0. There exist some t1 =
O
(
log 1

α

)
and t2 = O

(
log 1

ϵ

)
such that ∀k and ∀j ∈ Nk,

cos (µk,wj(t)) ≥ 1− Õ(α2), ∀t ∈ [t1, t2] .

We explicitly state the result during the alignment phase
in Proposition 4 to highlight the difference between its
described alignment for pReLU network (p > 2) to that
of Boursier et al. (2022) for ReLU networks, where neurons
are aligned with class average µ+ =

∑
1≤k≤K1

µk and
µ− =

∑
K1+1≤k≤K µk instead of cluster centers.

Convergence phase. (See Appendix G) During the conver-
gence phase, the weight norm grows and exceeds ϵ-level, as

8
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suggested by the following dynamics:

d

dt

∑
j∈Nk

∥wj∥2 =

(
1−

∑
j∈Nk

∥wj∥2
) ∑

j∈Nk

∥wj∥2

+

(
Õ
(

α√
N

)
+Õ

(
α2
)
+Õ (αp)

) ∑
j∈Nk

∥wj∥2 , (14)

which holds when ckj ≥ 1 − Õ
(
α2
)
,∀k,j ∈ Nk.

d
dt

∑
j∈Nk

∥wj∥2 =
(
1 −

∑
j∈Nk

∥wj∥2
)∑

j∈Nk
∥wj∥2

(nominal dynamics) describes the weight growth if ckj =
1,∀k, j ∈ Nk and α = 0. Following nominal dynamics,∑

j∈Nk
∥wj∥2 converges to 1 for every k.

The rest of the terms are considered perturbations due to
noisy samples around cluster centers and the fact that align-
ment ckj are only close to 1. The first Õ (α/

√
N) is due to the

noisy sample from the target k-th cluster, the second Õ
(
α2
)

term is from imperfect alignment ckj ≥ 1 − Õ
(
α2
)
, and

the last Õ (αp) term is from the noisy sample from the non-
target clusters (Notice that now wjs are almost orthogonal
to non-target clusters, thus the effect of non-target clusters is
smaller). With N = Ω̃(α−2) samples, the dominant terms
become Õ(α2), allowing us to show that

∑
j∈Nk

∥wj∥2

converges to 1± Õ(α2) within t∗ time.

The only missing piece is that this argument requires ckj ≥
1 − Õ

(
α2
)
,∀k, j ∈ Nk but one no longer has (13) after

Θ̃
(
log 1

ϵ

)
when weight norm starts to grow to Θ̃(1)-level.

Nonetheless, once the alignment ckj is 1 − Õ
(
α2
)
, it is

hard to drop below this level as it relies on the attraction
from non-target clusters but they are now near orthogonal to
the neurons. Indeed, during the convergence phase, we can
show that d

dtckj ≥ −Õ
(
αmin{p,4}) , by which we show ckj

can stay at 1− Õ
(
α2
)

level until T ∗ time. Since T ∗ ≥ t∗

for small α, our analysis of the weight norm growth is valid.

4. Conclusion
In this paper, we investigated the problem of learning ro-
bust classifiers for orthonormal GMMs. While constructing
the optimal robust classifiers is straightforward if the dis-
tribution is known, the challenge arises, however, when a
neural network is trained by gradient-based optimization
algorithms with sampled data. We showed how a careful
choice of activation function provably addresses the non-
robustness issue of the network trained via gradient flow,
highlighting how the implicit bias of training algorithms
can critically guide the network to learn accurately the data
structure, thereby achieving maximum robustness against
adversarial attacks. Future research includes addressing the
limitations in the current convergence analyses, generalizing
the data assumptions to more realistic ones, for example,
the union of subspaces.
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A. Technical limitations of current results
We discuss here several technical limitations of our current results and potential avenues to address them. These limitations
are listed in an order that the most challenging ones are stated first.

Requirement on the initialization. The initialization requires a non-degeneracy gap ∆ = Θ(1), this assumption aims
to alleviate the challenges to analyze the activation patterns {1⟨xi,µj⟩≥0} along the GF trajectory. The activation patterns
critically determine the gradient due to the existence of ReLU activations in the network. Generally, as a set of binary
states in the GF dynamics, their evolution is hard to track unless the underlying training data has some special property, for
example, (Boursier et al., 2022) assumes mutually orthogonal data, in which case the activation patterns remain constant
throughout GF, and (Phuong & Lampert, 2021; Min et al., 2024) assume orthogonally separable data, in which case the
activation can only flip in one direction (“0→ 1” or “1→ 0”) for each neuron. Due to relatively more complicated data
assumptions and the polynomial ReLU activations, there is no good technique to track the activation as of the current
analysis. Therefore, we pose the non-degeneracy gap ∆ = Θ(1) assumption on the initialization, under which each neuron
activates all the data points from its target cluster and none of the others, and the activation patterns are fixed thereafter.
Future research on careful analysis of the activation pattern evolution can relax this initialization assumption.

As we have discussed after Theorem 1, this non-degeneracy gap ∆ = Θ(1) generally cannot be achieved by random
initialization: the cosines between neurons and cluster centers are O

(
1√
D

)
with high probability. Given that D = Ω̃(α−2),

the actually non-degeneracy gap of a random initialization is Õ(α). We have discussed this issue when we define non-
degenerate initialization in Section 3.2.1: When neurons are initialized close to the boundary between a Voronoi regionRk

and another regionRl, whether they align with µk or with µl depends on the actually sampled points in the dataset. In this
regard, when weights are randomly initialized, there is a “burn-in” phase during which neurons “choose” their target clusters
depending on the samples, then once they get away from the boundary of these Voronoi regions with ∆ = Θ(1) gap, we can
characterize the GF dynamics afterward by Theorem 1.

Upper bound on N . Regarding our requirement Ω̃(α−2
0 ) ≤ N ≤ õ(exp(α−2

0 )), we have discussed the lower bound
N ≥ Ω̃(α−2

0 ) in Section 3.2.3. In fact, one can remove this lower bound and get a final bound Õ
(

α0√
N

)
in Theorem 1. The

upper bound N ≤ õ(exp(α−2
0 )) may seem puzzling. This issue originates from ReLU nonlinearity: a data point must

activate a neuron by having a positive inner product. Our analysis requires that a neuron wj is activated by every data point
from its target cluster, which is translated into two conditions: 1) Θ(1) non-degeneracy gap; and 2)

√
logNα0 = õ(1). Here√

logNα0 is essentially the radius of a ℓ2-ball centered at a cluster center that can contain all the sampled points from that
cluster with high probability. Without these conditions, there will be outliers in sampled points, which must be handled with
extra analysis. We believe this is possible because those outliers will be rare and thus may have a negligible effect on the
dynamics.

Extension to classification losses. Our results for the alignment phase directly apply to classification losses: The choice of
the loss ℓ(y, ŷ) only affects the alignment dynamics through∇ŷℓ(y, ŷ)|ŷ=0, and this quantity is same (may up to a constant
scaling) regardless of whether ℓ is exponential, logistic, or ℓ2. However, the analysis of convergence phase critically depends
on ℓ: Recall that in Section 3.2.3 we show that the nominal weight norm dynamics are ż = (1− z)z, z =

∑
j∈Nk

∥wj∥2
for ℓ2 loss. For exponential loss, the nominal dynamics become ż = exp(−z)z, whose closed-form solution is not available.
A better characterization of the solution to the nominal dynamics of the type ż = exp(−z)z in future research naturally
leads to an extension of Theorem 1 to classification losses.

Analysis until finite time T ∗. Our focus is on the distance between f (p)(·;θ(t)) and F (p), thus we restrict to the time
interval [0, T ∗] when we have explicit control of all relevant quantities (alignment, weight norms, etc.). To show convergence
towards a minimizer of the loss after T ∗, we believe applying the results in Chatterjee (2022) suffices, following the approach
in Boursier et al. (2022).
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B. Additional Experiments on Learning Robust Classifiers for Data from Orthonormal GMMs
B.1. Experiments on the role of non-degenerate initialization shape

In this section, we conduct experiments to show the difference between random initialization and non-degenerate ini-
tialization, with the main purpose being to verify the statements in our discussions Limitation of our current result
and Requirement on the initialization that training with random initialization, while not satisfying our non-degeneracy
assumption, still find the desired robust network.

Experiment settings. We consider two types of initialization shapes (The initialization scale is ϵ = 10−7):

• Random initialization: the initialization follows Assumption 1, with entries of initialization shape wj0, j = 1, · · · , h all
i.i.d. samples from standard Gaussian. As we discussed, this does not satisfy our Assumption 2 in high-dimensional
scenarios.

• Non-degenerate initialization: We nudge the above random initialization shape toward cluster centers to increase its
non-degeneracy gap. Specifically, for every j, we let wj0 ← wj0+δ ·(µ−wj0), where µ is randomly uniformly selected
from one of the cluster centers µk, k = 1, · · · ,K. The resulting new initialization shape has a non-degeneracy gap of
roughly δ, thus satisfying Assumption 2. We also adjust the |vj | accordingly so the initialization satisfies Assumption 1.
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Figure 5. GD on two-layer pReLU (p = 3) with random, small initialization

0 100 200 300 400 500 600
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e 
Al

ig
nm

en
t

Alignment v.s. Iteration

0 100 200 300 400 500 600
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

Di
st

an
ce

Loss & Distance v.s. Iteration

Distance
Loss 0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

Figure 6. GD on two-layer pReLU (p = 3) with non-degenerate (δ = 0.05), small initialization

After the initialization is determined, we run GD with step size 0.2 on a synthetic GMM dataset of size n = 5000 with
D = 1000,K1 = 5,K2 = 5, α = 0.1, and keep track of the following:

• Alignment: The alignment measures we are interested in are maxk cos(µk,wj), j = 1, · · · , h, and our Theorem 1 and
its proof suggest that they converge to close to 1 after sufficient training time. For clarity, we report their median (lines),
the 1st and 3rd quantiles (shaded regions).

• Loss: The mean square loss.

• Distantance to F (p): The quantity supx∈SD−1 |f (p)(x;θ)− F (p)(x)|. We estimate this quantity by randomly sampling
large batches of x and running projected gradient ascent on this distance, similar to (Min & Vidal, 2024).
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Experimental results. We plot the results in Figures 5 and 6. First of all, Figure 6 shows the convergence of GD under
non-degenerate initialization (in both the loss and the distance to F (p)). Then the same convergence happens under random
initialization. However, the alignment between neurons and cluster centers is slower for random initialization than with the
nudged initialization with δ = 0.05 non-degeneracy gap. This agrees with our discussions in Limitation of our current
result and Requirement on the initialization: having some non-degeneracy gap skips a "burn-in" phase for the neurons’
directional dynamics.

B.2. Experiments on the role of parametrization and initialization scale

In this section, we provide additional experiments to that in Figure 2, highlighting the importance of parametrization of
function space, and the hyperparameters of training algorithm in determining whether one can succeed in obtaining robust
classifier for data from orthonormal Gaussian mixture.

Figure 7. Given balanced orthonormal Gaussian mixture data with 12 positive clusters and 8 negative clusters (D = 2000), gradient
descent (SGD, small initialization) on (bias-free, width-200) two-layer network with regular polynomial ReLU activation of degree 3 fails
to find a robust classifier. Moreover, if one increases the variance of the random initialization, both regular polynomial ReLU network and
pReLU network can not find a robust classifier. All networks here are trained for a sufficient amount of epochs until they achieve perfect
training accuracy on a synthesis orthonormal Gaussian mixture dataset of size 20000.

Regular polynomial ReLU networks. In this experiment, we consider both the regular polynomial ReLU networks to
pReLU networks. In particular, recall that the regular polynomial ReLU networks are defined as:

g(x; θ̃) =

h∑
j=1

vjσ
p(⟨x,wj⟩) , (θ̃ := {wj , vj}hj=1) .

(Two-layer Networks with Polynomial ReLU activation with degree p)
We note its difference with pReLU networks: regular polynomial ReLU networks do not have a weight normalization at the
first layer. Nonetheless, when p is fixed, it is easy to verify that the function/hypothesis spaces induced by pReLU networks
and regular polynomial ReLU networks are the same: any function f (p)(x;θ) for some θ = {wj , vj}hj=1 is equivalent to
g(x; θ̃) with θ̃ = {wj ,

vj
∥wj∥p−1 }hj=1

5.

Regular polynomial ReLU networks v.s. pReLU. Although the induced function/hypothesis spaces are the same, GD on
regular polynomial ReLU networks and pReLU finds classifiers with different levels of robustness. As one can see in Figure
7, with a small initialization (all weight entries are randomly initialized as N (0, 1 × 10−4)), SGD on a pReLU network
successfully finds a classifier that is as robust as the Bayes classifier. However, SGD on a regular polynomial ReLU network
fails to find a robust classifier. This suggests that the way the function/hypothesis spaces are parametrized is also important
in determining the robustness of the networks trained by GD, as different parametrization induces different implicit biases of
GD in selecting the loss minimizer in the function space.

Effect of initialization scale. Finally, when one uses a large initialization scale, where all weight entries are randomly
initialized as N (0, 0.25), even the GD on a pReLU network fails to find a robust classifier. This is not surprising as the
initialization scale also controls the implicit bias of GD (Moroshko et al., 2020), and many works (Maennel et al., 2018;
Stöger & Soltanolkotabi, 2021; Li et al., 2018; 2021) have theoretically shown the advantage of using a small initialization
scale in GD.

5The neurons with ∥wj∥ = 0 should be eliminated from the parameters for this argument to hold.
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C. Optimal Robust Classifier for orthonormal Gaussian mixture
In this section, we discuss the optimal robust classifier for orthonormal Gaussian mixture. We first show that any measurable
classifier can not defend against an adversarial attack of ℓ2 radius

√
2
2 , leading to a robust error of at least min{K1,K2}

K . Then
we consider the Bayes optimal classifier f∗(x) = argmaxy P (Y = y|x) and show that it is also optimally robust: it can
defend against any adversarial attack of ℓ2 radius

√
2
2 − o(1), as the dimension of the data D increases.

C.1. Maximum robustness against ℓ2 adversarial attacks

We need the following lemma (we provide proof after proving Proposition 1)

Lemma 1. For any n ×m matrix, let a be the number of rows that contain at least one non-positive entry and b be the
number of columns that contain at least one non-negative entry. Then a+ b ≥ min{n,m}.

With Lemma 1, we are ready to prove Proposition 1.

Proposition 1 (Restated). Let f : RD → R be any Lebesgue measurable function such that the random variable
min∥d∥≤1

[
f
(
x+

√
2
2 d
)
y
]

is also measurable. Given a sample (x, y) ∼ DX,Y , we have

P

(
min
∥d∥≤1

[
f

(
x+

√
2

2
d

)
y

]
≤0

)
≥min{K1,K2}

K
. (C.1)

Proof. We start with the following:

P

(
min
∥d∥≤1

[
f

(
x+

√
2

2
d

)
y

]
≤ 0

)
=

K∑
k=1

P

(
min
∥d∥≤1

[
f

(
x+

√
2

2
d

)
y

]
≤ 0 | z = k

)
P (z = k) (C.2)

For k ≤ K1,

P

(
min
∥d∥≤1

[
f

(
x+

√
2

2
d

)
y

]
≤ 0 | z = k

)
= Pε

(
min
∥d∥≤1

[
f

(
µk + ε+

√
2

2
d

)]
≤ 0

)

≥ Pε

(
min

K1+1≤l≤K

[
f

(
µk + µl

2
+ ε

)]
≤ 0

)
.

The measurability of f ensures this lower bound exists. Similarly, we have for K1 + 1 ≤ k ≤ K

P

(
min
∥d∥≤1

[
f

(
x+

√
2

2
d

)
y

]
≤ 0 | z = k

)
= Pε

(
min
∥d∥≤1

[
−f

(
µk + ε+

√
2

2
d

)]
≤ 0

)

≥ Pε

(
min

1≤l≤K1

[
−f
(
µk + µl

2
+ ε

)]
≤ 0

)
= Pε

(
max

1≤l≤K1

[
f

(
µk + µl

2
+ ε

)]
≥ 0

)
.

Therefore,

P

(
min
∥d∥≤1

[
f

(
x+

√
2

2
d

)
y

]
≤ 0

)

=

K∑
k=1

P

(
min
∥d∥≤1

[
f

(
x+

√
2

2
d

)
y

]
≤ 0 | z = k

)
P (z = k)

=
1

K

 ∑
1≤k≤K1

P

(
min
∥d∥≤1

[
f

(
x+

√
2

2
d

)
y

]
≤ 0 | z = k

)
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+
∑

K1+1≤k≤K

P

(
min
∥d∥≤1

[
f

(
x+

√
2

2
d

)
y

]
≤ 0 | z = k

)
≥ 1

K

 ∑
1≤k≤K1

Pε

(
min

K1+1≤l≤K

[
f

(
µk + µl

2
+ ε

)]
≤ 0

)

+
∑

K1+1≤k≤K

Pε

(
max

1≤l≤K1

[
f

(
µk + µl

2
+ ε

)]
≥ 0

)
=

1

K

 ∑
1≤k≤K1

∫
1

(
min

K1+1≤l≤K

[
f

(
µk + µl

2
+ ε

)]
≤ 0

)
p(ε)

+
∑

K1+1≤k≤K

∫
1

(
max

1≤l≤K1

[
f

(
µk + µl

2
+ ε

)]
≥ 0

)
p(ε)


=

1

K

∫  ∑
1≤k≤K1

1

(
min

K1+1≤l≤K

[
f

(
µk + µl

2
+ ε

)]
≤ 0

)
(C.3)

+
∑

K1+1≤k≤K

1

(
max

1≤l≤K1

[
f

(
µk + µl

2
+ ε

)]
≥ 0

) p(ε) , (C.4)

and if we define the K1 ×K2 matrix

Mf (ε) :=

[
f

(
µk + µl

2
+ ε

)]
1≤k≤K1, K1+1≤l≤K

(C.5)

and examine carefully enough, we notice that
∑

1≤k≤K 1
(
minK1+1≤l≤K

[
f
(
µk+µl

2 + ε
)]
≤ 0
)

is the number of rows of
Mf (ε) that contains at least one non-positive entry and

∑
K1+1≤k≤K 1

(
max1≤l≤K1

[
f
(
µk+µl

2 + ε
)]
≥ 0
)

is the number
of columns of Mf (ε) that contains at least one non-negative entry. By Lemma 1, we have

P

(
min
∥d∥≤1

[
f

(
x+

√
2

2
d

)
y

]
≤ 0

)
≥ (C.4) ≥ 1

K

∫
min{K1,K2}p(ε) .

Therefore

P

(
min
∥d∥≤1

[
f

(
x+

√
2

2
d

)
y

]
≤ 0

)
≥ min{K1,K2}

K
. (C.6)

Proof of Lemma 1. We denote C∗(n,m) the minimum value of a+ b over all possible choice of n×m matrices. It suffices
to show C∗(n,m) ≥ min{n,m} (The equality is obtained by an all-positive matrix when n ≤ m and an all-negative matrix
otherwise), and we prove it by induction.

For n = 1,m = 1, C∗(n,m) = 1. This is trivial. We need to show that if C∗(n,m) = min{n,m} holds for some n and
m, then

• C∗(n,m+ 1) = min{n,m+ 1};

• and C∗(n+ 1,m) = min{n+ 1,m}.

We shall prove these two cases:

Case 1. C∗(n,m) ≥ min{n,m} ⇒ C∗(n,m+ 1) ≥ min{n,m+ 1}
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Given an n×m matrix M and an agumented matrix M ′ =
[
M v

]
, we let a, b and a′, b′ be the row/column counts of

our interest for M and M ′ respectively. Without loss of generality, we suppose the first a rows of M all contain at least one
non-positive entry (and the rest do not, by definition of a). We know that a+ b ≥ min{n,m}, and

a′ = a+

n∑
i=a+1

1(vi ≤ 0), b′ = b+ 1(max
i

vi ≥ 0) , (C.7)

which is

a′ + b′ = a+ b+

n∑
i=a+1

1(vi ≤ 0) + 1(max
i

vi ≥ 0) . (C.8)

There are two scenarios:

1. When a = n, we have
∑n

i=a+1 1(vi ≤ 0) + 1(maxi vi ≥ 0) ≥ 0

2. When a < n, we have
∑n

i=a+1 1(vi ≤ 0) + 1(maxi vi ≥ 0) ≥ 1 .

Therefore, we find that

a′ + b′ ≥ min{n+ b, a+ b+ 1} ≥ min{n,min{n,m}+ 1} = min{n, n+ 1,m+ 1} = min{n,m+ 1} . (C.9)

This shows C∗(n,m+ 1) ≥ min{n,m+ 1}.

Case 2. C∗(n+ 1,m) ≥ min{n+ 1,m} ⇒ C∗(n+ 1,m) ≥ min{n+ 1,m}

Given an n×m matrix M and an agumented matrix M ′ =

[
M
v

]
, we let a, b and a′, b′ be the row/column counts of our

interest for M and M ′ respectively. Without loss of generality, we suppose the first b columns of M all contain at least one
non-negative entry (and the rest do not, by definition of b). We know that a+ b ≥ min{n,m}, and

a′ = a+ 1(min
i

vi ≤ 0), b′ = b+

m∑
i=b+1

1(vi ≥ 0) , (C.10)

which is

a′ + b′ = a+ b+

m∑
i=b+1

1(vi ≥ 0) + 1(min
i

vi ≤ 0) . (C.11)

There are two scenarios:

1. When b = m, we have
∑m

i=b+1 1(vi ≥ 0) + 1(mini vi ≤ 0) ≥ 0

2. When b < m, we have
∑m

i=b+1 1(vi ≥ 0) + 1(mini vi ≤ 0) ≥ 1 .

Therefore, we find that

a′ + b′ ≥ min{a+m, a+ b+ 1} ≥ min{m,min{n,m}+ 1} = min{m,n+ 1,m+ 1} = min{n+ 1,m} . (C.12)

This shows C∗(n+ 1,m) ≥ min{n+ 1,m}.

C.2. Bayes Optimal Classifier w.r.t. 0-1 loss

We first show that the Bayes optimal classifier is approximately a nearest-cluster rule. We have the following derivation:

sign (f∗(x)) = sign

(∑K1

k=1
exp

(
D ⟨x,µk⟩

α2

)
−
∑K

k=K1+1
exp

(
D ⟨x,µk⟩

α2

))
= sign

(
α2

D
log

(
K1∑
k=1

exp

(
D ⟨x,µk⟩

α2

))
−α2

D
log

(
K∑

k=K1+1

exp

(
D ⟨x,µk⟩

α2

)))
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= sign
(

max
1≤k≤K1

⟨x, µk⟩ − max
K1+1≤k≤K

⟨x, µk⟩+O
(
logK

α2

D

))
,

where the second inequality is due to the fact that α2

D log(·) function is a non-decreasing function, and the third inequality
is because LogSumExp({z1, · · · , zK}) function with a temperature D

α2 uniformly approximate maxk zk with an error
O
(
logK α2

D

)
. As we discussed in the main paper, this is a nearest-cluster rule when α2/D is small.

We next show that the Bayes optimal classifier is robust. Our proof will use Hoeffding’s inequality for high-dimensional
Gaussian vectors

Lemma 2 (Hoeffding inequality). For any unit vector µ ∈ SD−1, we have

P
ε∼N

(
0,α

2

D I
) (| ⟨µ, ε⟩ | > t) ≤ 2 exp

(
−Dt2

2α2

)
. (C.13)

And the concentration result of the norm of high-dimensional Gaussian vectors

Lemma 3. We have

P
ε∼N

(
0,α

2

D I
) (∥ε∥ > t) ≤ 4 exp

(
− t2

8α2

)
, (C.14)

Proposition 2 (Restated). The Bayes optimal classifier w.r.t. the 0-1 loss is sign (f∗(x)), where

f∗(x)=

K1∑
k=1

exp

(
D ⟨x,µk⟩

α2

)
−

K∑
k=K1+1

exp

(
D ⟨x,µk⟩

α2

)
.

Moreover, given a sample (x, y) ∼ DX,Y , we have, for any 2
√
2α2 logK

D ≤ ν ≤
√
2,

P

(
min
∥d∥≤1

[
f∗

(
x+

√
2− ν

2
d

)
y

]
> 0

)

≥ 1− 2K exp

(
−Dν2

64α2

)
. (C.15)

Proof. Bayes optimal classifier for DX,Y The Bayes optimal classifier w.r.t. 0-1 loss is given by

f∗(x) = argmax
y

P (Y = y | X = x)

= argmax
y

K∑
k=1

P (Y = y | Z = k,X = x)P (Z = k | X = x)

=

{
1, if

∑K1

k=1 P (Z = k | X = x) >
∑K

k=K1+1 P (Z = k | X = x)

−1, o.w.

= sign

(
K1∑
k=1

P (Z = k | X = x)−
K∑

k=K1+1

P (Z = k | X = x)

)
. (C.16)

Bayes rule and a few derivations give:

P (Z = k | X = x) =
P (X = x | Z = k)P (Z = k)∑K
l=1 P (X = x | Z = l)P (Z = l)

=
exp

(
−D∥x−µk∥2

2α2

)
∑K

l=1 exp
(
−D∥x−µl∥2

2α2

)
=

exp
(
−D(∥x∥2−2⟨x,µk⟩+∥µk∥2))

2α2

)
∑K

l=1 exp
(
−D(∥x∥2−2⟨x,µl⟩+∥µl∥2)

2α2

) =
exp

(
D⟨x,µk⟩

α2

)
∑K

l=1 exp
(

D⟨x,µl⟩
α2

) . (C.17)

19



Gradient Flow Provably Learns Robust Classifiers for Orthonormal GMMs

Combining (C.16) and (C.17), we have

f∗(x) = sign

(
K1∑
k=1

exp

(
D ⟨x,µk⟩

α2

)
−

K∑
k=K1+1

exp

(
D ⟨x,µk⟩

α2

))
. (C.18)

Robustness of f∗. We now proceed to show that f∗ is robust near-optimally. Since

P

(
min
∥d∥≤1

[
f∗

(
x+

√
2− ν

2
d

)
y

]
≤ 0

)

=

K∑
k=1

P

(
min
∥d∥≤1

[
f∗

(
x+

√
2− ν

2
d

)
y

]
≤ 0

∣∣∣∣∣ z = k

)
P (z = k) ,

It suffices to show that ∀1 ≤ k ≤ K

P

(
min
∥d∥≤1

[
f∗

(
x+

√
2− ν

2
d

)
y

]
≤ 0

∣∣∣∣∣ z = k

)
≤ K exp

(
−CDν2

16α2

)
. (C.19)

When k ≤ K1, we have

P

(
min
∥d∥≤1

[
f∗

(
x+

√
2− ν

2
d

)
y

]
≤ 0

∣∣∣∣∣ z = k

)

= Pε

(
min
∥d∥≤1

[
f∗

(
x+

√
2− ν

2
d

)]
≤ 0

)

= Pε

(
min
∥d∥≤1

[
exp

(
D

α2

(
1 + ⟨µk, ε⟩+

√
2− ν

2
⟨d,µk⟩

))

+
∑

l ̸=k,1≤l≤K1

exp

(
D

α2

(
⟨µl, ε⟩+

√
2− ν

2
⟨d,µl⟩

))

−
∑

K1+1≤l≤K

exp

(
D

α2

(
⟨µl, ε⟩+

√
2− ν

2
⟨d,µl⟩

)) ≤ 0


≤ Pε

(
min
∥d∥≤1

[
exp

(
D

α2

(
1 + ⟨µk, ε⟩+

√
2− ν

2
⟨d,µk⟩

))

−
∑

K1+1≤l≤K

exp

(
D

α2

(
⟨µl, ε⟩+

√
2− ν

2
⟨d,µl⟩

)) ≤ 0


≤ Pε

(
min
∥d∥≤1

[
exp

(
D

α2

(
1 + ⟨µk, ε⟩+

√
2− ν

2
⟨d,µk⟩

))

−
∑

K1+1≤l≤K

exp

(
D

α2

(
|⟨µl, ε⟩|+

√
2− ν

2
|⟨d,µl⟩|

)) ≤ 0


≤ Pε

(
min
∥d∥≤1

[
exp

(
D

α2

(
1 + ⟨µk, ε⟩+

√
2− ν

2
⟨d,µk⟩

))

− K2 exp

(
D

α2

(
max

K1+1≤l≤K
|⟨µl, ε⟩|+

√
2− ν

2
max

K1+1≤l≤K
|⟨d,µl⟩|

))]
≤ 0

)

≤ Pε

(
min
∥d∥≤1

[
1 + ⟨µk, ε⟩+

√
2− ν

2
⟨d,µk⟩
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− α2

D
logK2 − max

K1+1≤l≤K
|⟨µl, ε⟩| −

√
2− ν

2
max

K1+1≤l≤K
|⟨d,µl⟩|

]
≤ 0

)

≤ Pε

(
min
∥d∥≤1

[
1 +

√
2− ν

2
⟨d,µk⟩ −

√
2− ν

2
max

K1+1≤l≤K
|⟨d,µl⟩|

]

− α2

D
logK2 − |⟨µk, ε⟩| − max

K1+1≤l≤K
|⟨µl, ε⟩| ≤ 0

)
, (C.20)

Since

min
∥d∥≤1

[
1 +

√
2− ν

2
⟨d,µk⟩ −

√
2− ν

2
max

K1+1≤l≤K
|⟨d,µl⟩|

]

≥ min
∥d∥≤1

1 + √2− ν

2
⟨d,µk⟩ −

√
2− ν

2

√ ∑
K1+1≤l≤K

|⟨d,µl⟩|2


≥ min
∥d∥≤1

1− √2− ν

2

√
2

√
| ⟨d,µk⟩ |2 +

∑
K1+1≤l≤K

|⟨d,µl⟩|2
 ≥ min

∥d∥≤1

[
1−
√
2− ν√
2
∥d∥

]
=

ν√
2
,

we finally have

(C.20) ≤ Pε

(
ν√
2
− α2

D
logK2 − |⟨µk, ε⟩| − max

K1+1≤l≤K
|⟨µl, ε⟩| ≤ 0

)
≤ Pε

(
ν

2
√
2
− 2 max

1≤l≤K
|⟨µl, ε⟩| ≤ 0

)
≤ KPε

(
|⟨µ1, ε⟩| ≥

ν

4
√
2

)
≤ 2K exp

(
−Dν2

64α2

)
. (C.21)

The proof for the case k ≥ K1 + 1 is almost identical.
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D. PReLU converges to optimal ℓ2-robust classifier, Part One: Convergence implies robustness
We first show that F p behaves like a nearest-cluster rule, which is critical for it to be robust. Notice that

sign (F p(x)) = sign

(∑K1

k=1
σp(⟨x,µk⟩)−

∑K

k=K1+1
σp(⟨x,µk⟩)

)
= sign

((∑K1

k=1
σp(⟨x,µk⟩)

) 1
p

−
(∑K

k=K1+1
σp(⟨x,µk⟩)

) 1
p

)

= sign
(
∥∥∥∥∥∥∥∥∥


σ(⟨x,µ1⟩)
σ(⟨x,µ2⟩)

...
σ(⟨x,µK1

⟩)


∥∥∥∥∥∥∥∥∥
p

−

∥∥∥∥∥∥∥∥∥


σ(⟨x,µK1+1⟩)
σ(⟨x,µK1+2⟩)

...
σ(⟨x,µK⟩)


∥∥∥∥∥∥∥∥∥
p

)
.

When p gets larger, the ∥ · ∥p is closer to the ∥ · ∥∞. Therefore, F p behaves more like a nearest-cluster rule for large p.

We next prove Proposition 3 here.

Proposition 3 (Restated). Let p > 2. Given a classifier f that satisfies f(γx) = γf(x), ∀x ∈ RD, ∀γ > 0 and

dist(f, F (p)) = infc>0 supx∈SD−1 |cf(x)− F (p)(x)| ≤ ν for some 0 < ν ≤
(√

2
8

)p
. Then for a sample (x, y) ∼ DX,Y ,

we have

P

(
min
∥d∥≤1

[
f

(
x+

√
2− 8ν

1
p

2
d

)
y

]
>0

)

≥ 1− 2K exp

(
− Dν

2
p

2K2α2

)
− 4 exp

(
− 3

8α2

)
. (D.1)

Proof. First of all, since f(γx) = γf(x),∀x ∈ RD,∀γ > 0 and the same holds for F (p)(·), we suppose the infimum is
attained at c∗ ≥ 0, then

sup
x∈RD

|c∗f(x)− F (p)(x)| = sup
x∈RD

∣∣∣∣c∗f ( x

∥x∥

)
− F (p)

(
x

∥x∥

)∣∣∣∣ ∥x∥ ≤ ∥x∥ν , (D.2)

where the last inequality uses dist(f, F (p)) ≤ ν. With (D.2), we have

P

(
min
∥d∥≤1

[
f

(
x+

√
2− 8ν

1
p

2
d

)
y

]
≤ 0

)

≤P

(
min
∥d∥≤1

[
c∗f

(
x+

√
2− 8ν

1
p

2
d

)
y

]
≤ 0

)

=P

(
min
∥d∥≤1

[
c∗f

(
x+

√
2− 8ν

1
p

2
d

)
y − F (p)

(
x+

√
2− 8ν

1
p

2
d

)
y + F (p)

(
x+

√
2− 8ν

1
p

2
d

)
y

]
≤ 0

)

≤P

(
min
∥d∥≤1

[
F (p)

(
x+

√
2− 8ν

1
p

2
d

)
y

]
− max

∥d∥≤1

∣∣∣∣∣c∗f
(
x+

√
2− 8ν

1
p

2
d

)
y − F (p)

(
x+

√
2− 8ν

1
p

2
d

)
y

∣∣∣∣∣ ≤ 0

)

≤P

(
min
∥d∥≤1

[
F (p)

(
x+

√
2− 8ν

1
p

2
d

)
y

]
− max

∥z∥2≤9

∣∣∣c∗f (z) y − F (p) (z) y
∣∣∣ ≤ 0, ∥x∥2 ≤ 17

2

)
+ P

(
∥x∥2 >

17

2

)

≤P

(
min
∥d∥≤1

[
F (p)

(
x+

√
2− 8ν

1
p

2
d

)
y

]
− max

∥z∥2≤9

∣∣∣c∗f (z) y − F (p) (z) y
∣∣∣ ≤ 0

)
+ P

(
∥x∥2 >

17

2

)

≤P

(
min
∥d∥≤1

[
F (p)

(
x+

√
2− 8ν

1
p

2
d

)
y

]
≤ 3ν

)
+ P

(
∥x∥2 >

17

2

)
.
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The second term P
(
∥x∥2 > 17

2

)
is easy to bound, our focus is to show

P

(
min
∥d∥≤1

[
F (p)

(
x+

√
2− 8ν

1
p

2
d

)
y

]
≤ 3ν

)
≥ 2(K + 1) exp

(
−CDν2

K2α2

)
, (D.3)

which resembles the result in Min & Vidal (2024, Theorem 1), but one can not directly obtain (D.3) from this existing
result. Nonetheless, we can partially follow Min & Vidal (2024, Theorem 1)’s proof and obtain (D.3) (with non-trivial new
derivations), as shown below:

Since

P

(
min
∥d∥≤1

[
F (p)

(
x+

√
2− 8ν

1
p

2
d

)
y

]
≤ 3ν

)

=

K∑
k=1

P

(
min
∥d∥≤1

[
F (p)

(
x+

√
2− 8ν

1
p

2
d

)
y

]
≤ 3ν

∣∣∣∣∣ z = k

)
P (z = k) ,

It suffices to show that ∀1 ≤ k ≤ K

P

(
min
∥d∥≤1

[
F (p)

(
x+

√
2− 8ν

1
p

2
d

)
y

]
≤ 3ν

∣∣∣∣∣ z = k

)
≤ 2(K2 + 2) exp

(
− CDδ2

2(K2 + 1)2α2

)
. (D.4)

When k ≤ K1, we have

P

(
min
∥d∥≤1

[
F (p)

(
x+

√
2− 8ν

1
p

2
d

)
y

]
≤ 3ν

∣∣∣∣∣ z = k

)

= Pε

(
min
∥d∥≤1

[
F (p)

(
x+

√
2− 8ν

1
p

2
d

)
y

]
≤ 3ν

)

= Pε

(
min
∥d∥≤1

[
σp

(
1 + ⟨µk, ε⟩+

√
2− 8ν

1
p

2
⟨d,µk⟩

)

+
∑

l ̸=k,1≤l≤K1

σp

(
⟨µl, ε⟩+

√
2− 8ν

1
p

2
⟨d,µl⟩

)

−
∑

K1+1≤l≤K

σp

(
⟨µl, ε⟩+

√
2− 8ν

1
p

2
⟨d,µl⟩

) ≤ 3ν


≤ Pε

(
min
∥d∥≤1

[
σp

(
1 + ⟨µk, ε⟩+

√
2− 8ν

1
p

2
⟨d,µk⟩

)

−
∑

K1+1≤l≤K

σp

(
⟨µl, ε⟩+

√
2− 8ν

1
p

2
⟨d,µl⟩

) ≤ 3ν

 (D.5)

We define the event

E :=

{
1 + ⟨µk, ε⟩+

√
2− 8ν

1
p

2
⟨d,µk⟩ ≥ 0,∀d ∈ SD−1

}
, (D.6)

Then, by Min & Vidal (2024, Lemma 2),

(D.5) = Pε

(
min
∥d∥≤1

[
σp

(
1 + ⟨µk, ε⟩+

√
2− 8ν

1
p

2
⟨d,µk⟩

)

−
∑

K1+1≤l≤K

σp

(
⟨µl, ε⟩+

√
2− 8ν

1
p

2
⟨d,µl⟩

) ≤ 3ν


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≤ Pε

(
min
∥d∥≤1

[
σp

(
1 + ⟨µk, ε⟩+

√
2− 8ν

1
p

2
⟨d,µk⟩

)

−
∑

K1+1≤l≤K

σp

(
⟨µl, ε⟩+

√
2− 8ν

1
p

2
⟨d,µl⟩

) ≤ 3ν, E

+ P (Ec) (D.7)

Since under event E , we have σp

(
1 + ⟨µk, ε⟩+

√
2−8ν

1
p

2 ⟨d,µk⟩
)

=

(
1 + ⟨µk, ε⟩+

√
2−8ν

1
p

2 ⟨d,µk⟩
)p

, we can pro-

ceed with

(D.7) = Pε

(
min
∥d∥≤1

[(
1 + ⟨µk, ε⟩+

√
2− 8ν

1
p

2
⟨d,µk⟩

)p

−
∑

K1+1≤l≤K

σp

(
⟨µl, ε⟩+

√
2− 8ν

1
p

2
⟨d,µl⟩

) ≤ 3ν, E

+ P (Ec)

≤ Pε

(
min
∥d∥≤1

[(
1 + ⟨µk, ε⟩+

√
2− 8ν

1
p

2
⟨d,µk⟩

)p

−
∑

K1+1≤l≤K

(
⟨|µl, ε⟩ |+

√
2− 8ν

1
p

2
| ⟨d,µl⟩ |

)p

− 3ν

 < 0, E

+ P (Ec)

≤ Pε

(
min
∥d∥≤1

[
1 + ⟨µk, ε⟩+

√
2− 8ν

1
p

2
⟨d,µk⟩

−

 ∑
K1+1≤l≤K

(
| ⟨µl, ε⟩ |+

√
2− 8ν

1
p

2
| ⟨d,µl⟩ |

)p

+ 3ν

1/p
 < 0, E

+ P (Ec)

≤ Pε

 min
∥d∥≤1

1 + √2− 8ν
1
p

2
⟨d,µk⟩ −

√
2− 8ν

1
p

2

 ∑
K1+1≤l≤K

| ⟨d,µl⟩ |p
1/p


︸ ︷︷ ︸

:=M∗(ν)

−

 ∑
K1+1≤l≤K

(| ⟨µl, ε⟩ |)p + 3ν

1/p

− | ⟨µk, ε⟩ | < 0, E

+ P (Ec)

≤ Pε

M∗(ν)−
∑

K1+1≤l≤K

| ⟨µl, ε⟩ | − (3ν)
1
p − | ⟨µk, ε⟩ | < 0

+ P (Ec) , (D.8)

From the proof of Min & Vidal (2024, Theorem 1), we have M∗(ν) = 4
√
2ν

1
p . Therefore we have

(D.8) = Pε

 ∑
K1+1≤l≤K

| ⟨µl, ε⟩ |+ | ⟨µk, ε⟩ | > M∗(ν)− (3ν)
1
p

+ P (Ec)

≥ Pε

 ∑
K1+1≤l≤K

| ⟨µl, ε⟩ |+ | ⟨µk, ε⟩ | >
(
4
√
2− 3

1
p

)
ν

1
p

+ P (Ec)

≥ Pε

 ∑
K1+1≤l≤K

| ⟨µl, ε⟩ |+ | ⟨µk, ε⟩ | >
√
2ν

1
p

+ P (Ec)
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≥ Pε

(
max

1≤k≤K
| ⟨µk, ε⟩ | >

√
2ν

1
p

K

)
+ P (Ec)

≥ KPε

(
| ⟨µ1, ε⟩ | >

√
2ν

1
p

K

)
+ P (Ec) ≥ 2K exp

(
− Dν

2
p

K2α2

)
+ P (Ec) .

Therefore, we have

P

(
min
∥d∥≤1

[
f

(
x+

√
2− 8ν

1
p

2
d

)
y

]
≤ 0

)
≤ 2K exp

(
− Dν

2
p

K2α2

)
+ P (Ec) + P

(
∥x∥2 >

3

2

)
.

Finally, by

P (Ec) ≤ P

(
|⟨µk, ε⟩| ≥ 1−

√
2

2

)
≤ P

(
|⟨µk, ε⟩| ≥

2

5

)
≤ 2 exp

(
− 2D

25α2

)

P

(
∥x∥2 >

17

2

)
≤ P

(
∥ε∥ ≥

√
17

2
− 1

)
≤ 4 exp

−(√17

2
− 1

)2
1

8α2

 ≤ 4 exp

(
− 3

8α2

)
,

The proof is finished, notice that the bad event ∥x∥2 > 17
2 is chosen arbitrarily, so one can derive more general results by

letting the results depend on the choice of a bad event. But for our purpose, we do not need it.
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E. PReLU converges to optimal ℓ2-robust classifier, Part Two: Basic results on neuron dynamics
and good events

In this and the following sections, we let ℓi(t) := ℓ(yi, f
(p)(xi;θ(t))) denote the loss on data point (xi, yi), and ∇ŷℓi

denotes the derivation of ℓi w.r.t. its second argument, the network output. Moreover, we let ckj := cos(µi,wj(t))
denote the cosine angle between cluster center µk and neuron wj . Note: For simplicity, we drop the time dependence in
θ(t), vj(t),wj(t),L(t), ℓi(t), ckj(t) and write θ, vj ,wj ,L, ℓi, ckj whenever it is clear that they come from the GF solution
thus depend on time. Note: It suffices to prove the case α = α0, we thus use α to both denote the intra-class variance
and the α0 we use to control the order of all the relevant quantities in our proofs.

We also let Ik := {i : (k − 1)N + 1 ≤ i ≤ kN}, the index set of data sampled from k-th cluster.

E.1. Results on neuron dynamics

Neuron dynamics: Under GF, we have

d

dt
wj = −

1

N

KN∑
i=1

∇ŷℓi vj

(
p[σ(⟨xi,wj⟩)]p−1

∥wj∥p−1
xi − (p− 1)

[σ(⟨xi,wj⟩)]p

∥wj∥p+1
wj

)
= − 1

N

∑
i:⟨xi,wj⟩>0

∇ŷℓi vj

(
p[⟨xi,wj⟩]p−1

∥wj∥p−1
xi − (p− 1)

[⟨xk,wj⟩]p

∥wj∥p+1
wj

)

and similarly,

d

dt
vj = −

1

N

∑
i:⟨xi,wj⟩>0

∇ŷℓi
[⟨xi,wj⟩]p

∥wj∥p−1

Balancedness: We compute

d

dt
(w⊤

j wj) = 2

〈
d

dt
wj ,wj

〉
= − 1

N

∑
i:⟨xi,wj⟩>0

∇ŷℓi vj

(
p[⟨xi,wj⟩]p

∥wj∥p−1
− (p− 1)

[⟨xk,wj⟩]p

∥wj∥p−1

)

= − 2

N

∑
i:⟨xi,wj⟩>0

∇ŷℓi vj
[⟨xi,wj⟩]p

∥wj∥p−1
,

and

d

dt
v2j = 2 vj

d

dt
vj = −

2

N

∑
i:⟨xi,wj⟩>0

∇ŷℓi vj
[⟨xi,wj⟩]p

∥wj∥p−1

Therefore, we have
d

dt
(w⊤

j wj − v2j ) ≡ 0 , (E.1)

thus w⊤
j (t)wj(t) − v2j (t) = w⊤

j (0)wj(0) − v2j (0),∀t, since we have a balanced initialization such that w⊤
j (0)wj(0) −

v2j (0),∀j. Such balancedness holds for all time t. Using this balancedness v2j ≡ ∥wj∥2,∀j ∈ [h], we can write

d

dt
wj = −

sign(vj(0))

N

∑
i:⟨xi,wj⟩>0

∇ŷℓi ∥wj∥

(
p

(〈
xi,

wj

∥wj∥

〉)p−1

xi − (p− 1)

(〈
xi,

wj

∥wj∥

〉)p
wj

∥wj∥

)
, (E.2)

where we use that sign(vj(t)) = sign(vj(0)), which is another consequence of balancedness Boursier et al. (2022); Min
et al. (2024). We will study the dynamics of wj from now on, and one can write the time derivatives of the norm and
direction of these neurons:
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Neuron norm dynamics:

d

dt
∥wj∥2

= 2

〈
wj ,

d

dt
wj

〉
= −2 sign(vj(0))

N

∑
i:⟨xi,wj⟩>0

∇ŷℓi ∥wj∥

(
p

(〈
xi,

wj

∥wj∥

〉)p−1

⟨wj ,xi⟩ − (p− 1)

(〈
xi,

wj

∥wj∥

〉)p

∥wj∥

)

= −2 sign(vj(0))

N

∑
i:⟨xi,wj⟩>0

∇ŷℓk ∥wj∥
(
p

(〈
xi,

wj

∥wj∥

〉)p

∥wj∥ − (p− 1)

(〈
xi,

wj

∥wj∥

〉)p

∥wj∥
)

= −2 sign(vj(0))

N

 ∑
i:⟨xi,wj⟩>0

∇ŷℓi

(〈
xi,

wj

∥wj∥

〉)p
 ∥wj∥2 (E.3)

Neuron angular dynamics:

d

dt

wj

∥wj∥

=

(
I −

wjw
⊤
j

∥wj∥2

)
1

∥wj∥
d

dt
wj

= − sign(vj(0))

N

∑
i:⟨xi,wj⟩>0

∇ŷℓi

(
I −

wjw
⊤
j

∥wj∥2

)(
p

(〈
xi,

wj

∥wj∥

〉)p−1

xi − (p− 1)

(〈
xi,

wj

∥wj∥

〉)p
wj

∥wj∥

)

= − sign(vj(0))

N

∑
i:⟨xi,wj⟩>0

∇ŷℓi p

(〈
xi,

wj

∥wj∥

〉)p−1(
xi −

〈
xi,

wj

∥wj∥

〉
wj

∥wj∥

)
. (E.4)

Finally, from the directional dynamics d
dt

wj

∥wj∥ , we obtain

d

dt
ckj =

〈
µk,

d

dt

wj

∥wj∥

〉
= − sign(vj(0))

N

∑
i:⟨xi,wj⟩>0

∇ŷℓi p

(〈
xi,

wj

∥wj∥

〉)p−1(
⟨µk,xi⟩ −

〈
xi,

wj

∥wj∥

〉
ckj

)
, (E.5)

and whenever |ckj | ≠ 0, we have

d

dt
log |ckj |

=
1

ckj

d

dt
ckj

= − sign(vj(0))

N

∑
i:⟨xi,wj⟩>0

∇ŷℓi p

(〈
xi,

wj

∥wj∥

〉)p−1( ⟨µk,xi⟩
ckj

−
〈
xi,

wj

∥wj∥

〉)
(E.6)

Our proof has the same structure as prior works (Boursier et al., 2022; Min et al., 2024): We will study neuron’s angular
dynamics (E.5) at the early phase (alignment phase) of the GF training, and then study neuron’s norm dynamics (E.3) at the
later phase (convergence phase).

Lastly, in order to prove Lemma 7 and Proposition 4 in the next subsection, we need the following:

We let {µK+1, · · · ,µD} be an orthonormal basis for the subspace that is orthogonal to span{µ1, · · · ,µK}, and we can
define ckj = cos(µk,wj), k = K + 1, · · · , D. Since {µ1, · · · ,µD} forms an orthonormal basis for the ambient space RD,
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we have
D∑

k=1

c2kj =

D∑
k=1

∣∣∣∣〈µk,
wj

∥wj∥

〉∣∣∣∣2 = 1 . (E.7)

Moreover, we can write the same time-derivatives d
dtckj , d

dt log |ckj | for ckj = cos(µk,wj), k = K + 1, · · · , D as in (E.5)
and (E.6), respectively.

Lastly, the following inequality will be used frequently in our proof:

∑
l ̸=k

cplj ≤
∑

1≤l≤D,l ̸=k

|clj |p ≤

 ∑
1≤l≤D,l ̸=k

c2lj


p
2

=
(
1− c2kj

) p
2 (E.8)

Note: The sum operation
∑

l ̸=k implicitly assumes l ≤ K. We will explicitly indicate the range of l if it can take values
between K + 1 and D.

E.2. Good Event

For a balanced dataset D̂ = {xi, yi}KN
i=1 , notice that xi = µ⌈ i

N ⌉ + εi for some εi ∈ N
(
0, α2

D I
)

. We define the following
good event w.r.t. these εis and show that they happen with high probability:

Lemma 4. We define the event Egood when the following happens:

1. ∥εi∥ ≤
√
8 log 16KN

δ α, ∀1 ≤ i ≤ KN ;

2. | ⟨µk, εi⟩ | ≤
√
2 log 8K2N

δ
α√
D
, ∀1 ≤ i ≤ KN, 1 ≤ k ≤ K;

3. ∥
∑

i∈Ik
εi∥ ≤

√
2 log 8K

δ α
√
N, ∀1 ≤ k ≤ K

4.
∑

i∈Ik
∥εi∥2 ≤ 8 log 16K

δ α2N, ∀1 ≤ k ≤ K

We have P (Egood) ≥ 1− δ. Furthermore, for simplicity, we write

1. ∥εi∥ ≤ C
√
log K2N

δ α, ∀1 ≤ i ≤ KN ;

2. | ⟨µk, εi⟩ | ≤ C
√
log K2N

δ
α√
D
, ∀1 ≤ i ≤ KN, 1 ≤ k ≤ K;

3. ∥
∑

i∈Ik
εi∥ ≤ C

√
log K

δ α
√
N, ∀1 ≤ k ≤ K;

4.
∑

i∈Ik
∥εi∥2 ≤ C log K

δ α
2N, ∀1 ≤ k ≤ K ,

for some universal constant C > 0.

Proof. We proof relavent probabilities one by one:

1. By Lemma 3, we have

P (∥εi∥ ≥ t) ≤ 4 exp

(
− t2

8α2

)
. (E.9)

2. By Lemma 2, we have

P (| ⟨µk, εi⟩ | ≥ t) ≤ 2 exp

(
−Dt2

2α2

)
. (E.10)
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3. Apply Lemma 3 to the vector
∑

i∈Ik
εi, we have

P

(∥∥∥∥∥∑
i∈Ik

εi

∥∥∥∥∥ ≥ t

)
≤ 4 exp

(
− t2

8Nα2

)
. (E.11)

4. Apply Lemma 3 to the vector that is the concatenation of all εi, i ∈ Nk and notice that its norm is equal to√∑
i∈Ik
∥εi∥2, hence

P

(∑
i∈Ik

∥εi∥2 ≥ t2

)
≤ 4 exp

(
− t2

8Nα2

)
. (E.12)

Therefore,

P

(
∥εi∥ ≥

√
8 log

16KN

δ
α

)
≤ δ

4KN
, ∀1 ≤ i ≤ KN ,

P

(
| ⟨µk, εi⟩ | ≥

√
2 log

8K2N

δ

α√
D

)
≤ δ

4K2N
, ∀1 ≤ i ≤ KN, 1 ≤ k ≤ K ,

P

(∥∥∥∥∥∑
i∈Ik

εi

∥∥∥∥∥ ≥
√

8 log
16K

δ
α
√
N

)
≤ δ

4K
, ∀1 ≤ k ≤ K ,

P

(∑
i∈Ik

∥εi∥2 ≥ 8 log
16K

δ
α2N

)
≤ 4 exp

(
− t2

8Nα2

)
≤ δ

4K
, ∀1 ≤ k ≤ K .

The union bound shows that P (Egood) ≤ 1− δ .
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F. PReLU converges to optimal ℓ2-robust classifier, Part Three: Alignment Phase
F.1. Auxiliary lemmas

We need the following lemmas (proofs provided in Appendix H)

Lemma 5. Given an initialization shape that satisfies Assumption 2 with non-degeneracy gap ∆ > 0, then for j ∈ Nk, we
have

ckj(0) = cos(µk,wj(0)) ≥

√
1

2

(
1

(1−∆)2
− 1

)
:= ∆̃1, (F.1)

cp−2
lj (0)

cp−2
kj (0)

≤ (1−
√
2∆)p−2 := 1− ∆̃2,∀l ̸= k with yl = yk and clj(0) > 0 (F.2)

Lemma 6. Let p > 2. Condition on good event Egood. Given some 1 ≤ k ≤ K and some j ∈ Nk and suppose the following
is true at some point on the GF trajectory:

1. ckj ≥ ∆̃1;

2. |clj |
ckj
≤ (1−

√
2∆),∀l ̸= k.

Then the following holds:

d

dt
ckj ≥ pcp−1

kj ∆̃2(1− ckj)− C1 log
K

δ
α2 − C2 max

k
|f (p)(µk;θ(t)| ,

for some universal constant C1, C2 that depends on p. If one further assume ckj ≥
√

4
5 , then the lower bound can be

improved as

d

dt
ckj ≥ pcp−1

kj

(
1− 1

2p−2

)
(1− ckj)− C1 log

K

δ
α2 − C2 max

i
|f (p)(xi;θ)| ,

Lemma 7. Let p > 2. Condition on good event Egood. Given an initialization shape that satisfies Assumption 2 with
non-degeneracy gap ∆ > 0, define

t1a := inf

{
t : max

i
|f (p)(xi;θ(t)| > min

{
∆̃p−1

1 ∆̃2(1− ∆̃1)

2p+1
,
∆̃p−1

1 ∆̃2(1−
√
2∆)

2K2p+1

}}
. (F.3)

Then the following holds ∀t ≤ t1a:

ckj(t) ≥ ckj(0) ≥ ∆̃1,∀1 ≤ k ≤ K, j ∈ Nk , (F.4)

and

|cp−2
lj (t)|
cp−2
kj (t)

≤
|cp−2

lj (0)|
cp−2
kj (0)

≤ 1− ∆̃2 . and ∀l ̸= k, j ∈ Nk . (F.5)

Lemma 8. Let p > 2. Condition on good event Egood, then with any balanced initialization scale ϵ ≤ 1
4
√
hW 2

max

, the solution
to gradient flow dynamics satisfies

max
k
|f (p)(µk;θ(t))| ≤ 2ϵ

√
hW 2

max , ∀t ≤ 1

2p+2K
log

(
1

2p−1
√
hϵ

)
. (F.6)

The following lemma will be used to upper-bound the time each neuron spends until reaching a neighborhood of some data
µk.
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Lemma 9. Let p > 2. Given some C > 0, if for some z(t), the following holds

d

dt
z ≥ Czp−1 ,∀t ∈ [0, T ], z(0) = z0, z(T ) = z1 , (F.7)

for some 0 < z0 ≤ z1 < 1. Then the travel time T for z(t) to go from z0 to z1 satifies:

T ≤ 1

(p− 2)Czp−2
0

. (F.8)

Lemma 10. Let p > 2. Given some C > 0, if for some z(t), the following holds

d

dt
z ≥ C(1− z) ,∀t ∈ [0, T ], z(0) = z0, z(T ) = z1 , (F.9)

for some 0 < z0 ≤ z1 < 1. Then the travel time T for z(t) to go from z0 to z1 satifies:

T ≤ 1

C
log

1

1− z1
. (F.10)

The following lemma will be used to lower-bound the time each neuron can stay around the neighborhood of some data µk.

F.2. Proof of Proposition 4

Proposition 2 (Restated). Given the same assumptions as in Theorem 1 and consider the same GF solution θ(t), t ≥ 0. There
exist some t1 = O

(
log 1

α

)
and t2 = O

(
log 1

ϵ

)
such that ∀k and ∀j ∈ Nk, cos (µk,wj(t)) ≥ 1− Õ(α2), ∀t ∈ [t1, t2] .

Proof of Proposition 4. Breakdown the proofs We let

t1 := inf

{
t : min

k
min
j∈Nk

ckj(t) ≥ 1− C log
K

δ
α2

}
. (F.11)

We define

ϵ0 := min

{
∆̃p−1

1 ∆̃2(1− ∆̃1)

2p+2
√
hW 2

max

,

∆̃p−1
1 ∆̃2(1−

√
2∆)

2K2p+2
√
hW 2

max

,

p∆̃p−1
1 ∆̃2α

2

8
√
hW 2

max

,

1√
h
exp

(
−4K

(
20

(p− 2)p∆̃2∆̃
p−2
1

+
2

p(2p−1 − 2)
log

1

C log K
δ α

2

))}
. (F.12)

Our goal is to show that if the initialization scale ϵ ≤ ϵ0 (Notice that our assumption ϵ = Θ(α8K) can satisfies this
inequality), then

1. mink minj∈Nk
ckj(t) grows above 1− C log K

δ α
2 before

t̄1 := 20

(p−2)p∆̃2∆̃
p−2
1

+ 2
p(2p−1−2) log

1
C log K

δ α2 ;

2. Any ckj(t) staying above 1− C log K
δ α

2 during [t1, t2], where t2 := 1
2p+2K log

(
1

2p−1
√
hϵ

)
;

The remaining proof is to show them one by one.

Upper bound on t1 When 1 ≤ k ≤ K1, j ∈ Nk implies that wj0 ∈ Rk and sign(vj) = 1. We shall primarily focus on this
case as the proof is nearly identical for K1 + 1 ≤ k ≤ K. We prove it by contradiction.
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∀t ≤ t̄1, we have

max
i
|f (p)(xi;θ)| ≤ min

{
∆̃p−1

1 ∆̃2(1− ∆̃1)

2p+1
,
∆̃p−1

1 ∆̃2(1−
√
2∆)

2K2p+1

}
, (By Lemma 8 and (F.12)) (F.13)

and

ckj(t) ≥ ∆̃1,
cp−2
lj

cp−2
kj

≤ 1− ∆̃2 ,∀l ̸= k, j ∈ Nk . (By (F.13) and Lemma 7) (F.14)

Suppose t1 ≥ t̄1, then ∃k, j ∈ Nk such that t(k)1j := inf{t : ckj(t) ≥ 1− α2

2 } > t̄1. However, for 0 ≤ t ≤ t̄1, we have, by
Lemma 6, for this particular k, j,

Whenever ckj ≥ ∆̃1,

d

dt
ckj ≥ pcp−1

kj ∆̃2(1− ckj)− C1 log
K

δ
α2 − C2 max

k
|f (p)(µk;θ(t)| , (F.15)

Whenever ckj ≥
√

4

5
,

d

dt
ckj ≥ pcp−1

kj

(
1− 1

2p−2

)
(1− ckj)− C1 log

K

δ
α2 − C2 max

k
|f (p)(µk;θ(t)| , (F.16)

Notice that by Lemma 8 and (F.12), we have

max
i
|f (p)(xi;θ)| ≤

p∆̃p−1
1 ∆̃2α

2

4
(F.17)

These suffices to show that ckj will reach 1− Cα2

2 in less than t̄1 time.

For some choice of C and sufficiently small α, we have: Whenever, ∆̃1 ≤ ckj ≤
√

4
5 ,

d

dt
ckj ≥ pcp−1

kj ∆̃2(1− ckj)− C1 log
K

δ
α2 − C2 max

k
|f (p)(µk;θ(t)|

≥ pcp−1
kj ∆̃2

(
1−

√
4

5

)
− C1 log

K

δ
α2 − C2 max

k
|f (p)(µk;θ(t)|

≥ pcp−1
kj ∆̃2

(
1−

√
4

5

)
− C1 log

K

δ
α2 − C2

p∆̃p−1
1 ∆̃2α

2

4
.

≥ p

2
cp−1
kj ∆̃2

(
1−

√
4

5

)
≥ p

20
cp−1
kj ∆̃2 , (F.18)

where we uses the fact that ckj ≥ ∆̃1 in the last inequality. Whenever,
√

4
5 ≤ ckj ≤ 1− Cα2

2 ,

d

dt
ckj ≥ pcp−1

kj

(
1− 1

2p−2

)
(1− ckj)− C1 log

K

δ
α2 − C2 max

k
|f (p)(µk;θ(t)|

≥ p(2p−1 − 2)(1− ckj)− C1 log
K

δ
α2 − C2 max

k
|f (p)(µk;θ(t)|

≥ p(2p−1 − 2)(1− ckj)− C1 log
K

δ
α2 − C2

p∆̃p−1
1 ∆̃2α

2

4

≥ p

2
(2p−1 − 2)(1− ckj) , (F.19)

where we uses the fact that ckj ≤ 1− C log K
δ α

2 in the last inequality. The right-hand sides of (F.18) and (F.19) is positive,
which proves that ckj is monotonically increasing before reaching 1− C log K

δ α
2. Lastly,
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1. by Lemma 9 and (F.18), it takes at most 20

(p−2)p∆̃2∆̃
p−2
1

time for ckj to travel from ∆̃1 to
√

4
5 ;

2. by Lemma 10 and (F.19), it takes at most 2
p(2p−1−2) log

1
C log K

δ α2 time for ckj to travel from
√

4
5 to 1− C log K

δ α
2.

Therefore, we have

t
(k)
1j := inf{t : ckj(t) ≥ 1− α2

2
} ≤ 20

(p− 2)p∆̃2∆̃
p−2
1

+
2

p(2p−1 − 2)
log

1

C log K
δ α

2
= t̄1 , (F.20)

which contradicts our initial assumption that ckj(t) > t̄1. Hence t1 ≤ t̄1.

Maintaining C log K
δ α

2 alignment until t2 We have shown that at some t1 ≤ t̄1, all ckj have grown above 1−C log K
δ α

2.
Now we show that any ckj(t) stays above 1− C log K

δ α
2 between [t1, t2]. It suffices to show that for any t ≤ t2,

d

dt
ckj

∣∣∣∣
ckj=1−C log K

δ α2

≥ 0 . (F.21)

Indeed, the inequality (F.16) is still valid before t2, i.e.

d

dt
ckj ≥ pcp−1

kj

(
1− 1

2p−2

)
(1− ckj)− C1 log

K

δ
α2 − C2 max

k
|f (p)(µk;θ(t)|

≥ p(2p−1 − 2)(1− ckj)− C1 log
K

δ
α2 − C2

p∆̃p−1
1 ∆̃2α

2

4
.

Therefore, for some choice of C and sufficiently small α,

d

dt
ckj

∣∣∣∣
ckj=1−C log K

δ α2

≥ p(2p−1 − 2)C log
K

δ
α2 − C1 log

K

δ
α2 − C2

p∆̃p−1
1 ∆̃2α

2

4
≥ 0 . (F.22)

Hence
min
k

min
j∈Nk

ckj(t) ≥ 1− C log
K

δ
α2,∀t ∈ [t1, t2] . (F.23)
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G. PReLU converges to optimal ℓ2-robust classifier, Part Four: Convergence Phase
G.1. Axuiliary Lemmas

We need the following lemmas (proofs provided in Appendix H):

Lemma 11. Let p > 2. Condition on good event Egood. Suppose the following is true at some point on the GF trajectory:

1. ckj(t) ≥ 1− 2Ca log
K
δ α

2, ∀k, j ∈ Nk;

2.
∑

j∈Nk
∥wj∥2 ≤ 1 + Cw log K

δ α
2, ∀k;

3.
∑

j∈Nc
∥wj∥2 = õ(α2) .

Then the following holds for every 1 ≤ k ≤ K, i ∈ Ik,

f (p)(xi;θ) ≤
∑
j∈Nk

∥wj∥2
(
1 + 2p+2C

√
log

K2N

δ
α2

)
+ 2KCαp ;

f (p)(xi;θ) ≥
∑
j∈Nk

∥wj∥2
(
1− 4pC

√
log

K2N

δ
α2

)
− 2KCαp .

Lemma 12. Let p > 2. Condition on good event Egood. Suppose the following is true at some point on the GF trajectory:

1. ckj(t) ≥ 1− 2Ca log
K
δ α

2, ∀k, j ∈ Nk;

2.
∑

j∈Nk
∥wj∥2 ≤ 1 + Cw log K

δ α
2, ∀k;

3.
∑

j∈Nc
∥wj∥2 = õ(α2) .

Furthermore, suppose additionally that for some k, j ∈ Nk:

1− 2Ca log
K

δ
α2 ≤ ckj(t) ≤ 1− Ca log

K

δ
α2;

Then the following holds for the same k, j,

d

dt
ckj ≥ −CK log

K2N

δ
αmin{p,4} .

Lemma 13. Let p > 2. Condition on good event Egood. Suppose the following is true at some point on the GF trajectory :

1. ckj(t) ≥ 1− 2Ca log
K
δ α

2, k, j ∈ Nk;

2.
∑

j∈Nk
∥wj∥2 ≤ 1 + Cw log K

δ α
2, ∀k;

3.
∑

j∈Nc
∥wj∥2 = õ(α2) .

Then the following holds for every 1 ≤ k ≤ K,

d

dt

∑
j∈Nk

∥wj∥2
 ≤ 2

1−
∑
j∈Nk

∥wj∥2 + C log
K

δ
α2

∑
j∈Nk

∥wj∥2
 ,

and

d

dt

∑
j∈Nk

∥wj∥2
 ≥ 2

1−
∑
j∈Nk

∥wj∥2 − C log
K

δ
α2

∑
j∈Nk

∥wj∥2
 ,

where C is some universal constant such that C < Cw.
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Lemma 14. Consider the same assumptions as in Proposition 4. Given the t1 in Proposition 4, the following holds
∀1 ≤ k ≤ K: ∑

j∈Nk

∥wj(t1)∥2 ≥ exp

(
− 2pp+2K

p(p− 2)∆̃2∆̃
p−2
1

)
W 2

minϵ
2 . (G.1)

Lemma 15. Given some 0 < ∆ < 1
4 , if for some z(t), the following holds

d

dt
z ≥ (1− z −∆)z, z(0) = z0, z(T ) = z1 , (G.2)

for some 0 < z0 ≤ 1
4 , and z0 ≤ z1 < 1−∆. Then the travel time T for z(t) to go from z0 to z1 satisfies:

T ≤ 2

(
log

1

1− z1 −∆
+ log

1

z0

)
. (G.3)

Lemma 16. Condition on good event Egood, we have∑
j∈Nc

∥wj(t)∥2 = õ(α2) , ∀t ≤ T ∗ . (G.4)

Lemma 17. If the neurons {wj}hj=1 satisfies the following for some 0 ≤ δ ≤ 1 and ν, ζ > 0:

• maxk maxj∈Nk
ckj(t) ≥ 1− δ;

•
∣∣∣1−∑j∈Nk

∥wj∥2
∣∣∣ ≤ ν;

•
∑

j∈N c ∥wj∥2 ≤ ζ,

then supx∈SD−1

∣∣f (p)(x;θ)− F (p)(x)
∣∣ ≤ K(1 + ν)(2p − 1)2δ +Kν + ζ

G.2. Proof of Theorem 1

Theorem 3 (Restated). Let p > 2. Given 0 ≤ δ ≤ 1 and a sufficiently small α2
0, assume the intra-cluster variance, the data

dimension, and per-cluster sample size satisfy that α2 ≤ α2
0, D ≥ Ω̃(α−2

0 ) and Ω̃(α−2
0 ) ≤ N ≤ õ(exp(α−2

0 )), respectively.
Suppose that the initialization θ(0) is balanced, ϵ-small (Assumption 1) with ϵ = Θ̃

(
α8K
0

)
, and satisfies Assumption

2 with a non-degeneracy gap ∆ = Θ(1). Then with probability at least 1 − δ, the GF dynamics (7) with a sampled

balanced dataset D̂ = {xi, yi}KN
i=1 , starting from θ(0), has its solution θ(t) satisifying that: for some t∗ = Õ

(
log 1

α0

)
and T ∗=Θ̃

(
log 1

α0

)
+ Ω̃

(
α
−min{p−2,2}
0

)
with [t∗, T ∗] ̸= ∅, we have L(θ(t))=Õ(α4

0),∀t∈ [t∗, T ∗], and

sup
t∈[t∗,T∗]

sup
x∈SD−1

∣∣∣f (p)(x;θ(t))− F (p)(x)
∣∣∣≤Õ(α2

0

)
. (G.5)

Proof. We have shown in Proposition 4, and Lemma 14 that:

1. Any ckj(t) staying above 1− Ca log
K
δ α

2 during [t1, t2];

2.
∑

j∈Nk
∥wj(t1)∥2 ≥ exp

(
− 2pp+2K

p(p−2)∆̃2∆̃
p−2
1

)
W 2

minϵ
2, for every 1 ≤ k ≤ K.

We define

t∗ = t1︸︷︷︸
O(1)

+2

(
log

1

(C − Cw) log
K
δ α

2
+

2pp+2K

p(p− 2)∆̃2∆̃
p−2
1

+ log
1

W 2
minϵ

2

)
(G.6)

T ∗ = t2︸︷︷︸
Θ(log 1

ϵ )

+
C

log K2N
δ

αmax{2−p,−2} (G.7)

Since ϵ = Θ(α8K). For sufficiently small α, we have O(log 1
α ) = t∗ ≤ T ∗ = Θ(αmin{2−p,−2}). Our goal is to show that
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1. Before T ∗, one must have maxk maxj∈Nk
ckj(t) ≥ 1− 2Ca log

K
δ α

2 and
∑

j∈Nk
∥wj(t)∥2 ≤ 1 + Cw log K

δ α
2;

2. Before T ∗, for all k, whenever
∑

j∈Nk
∥wj(t)∥2 reaches 1− Cw log K

δ α
2, it can not drop below 1− Cw log K

δ α
2;

3. After t∗, for all k, one must have
∑

j∈Nk
∥wj∥2 ≥ 1− 2Cw log K

δ α
2 .

We also have
∑

j∈Nc
∥wj∥2 = õ(α2), then applying Lemma 17 gives the desired result. The statement that L(t) = Õ(α4)

is due to the fact that |yi − f (p)(xi;θ(t))| = Õ(α2) during [t∗, T ∗].

First claim: The two inequalities hold before t2, thus it suffices to study

τ3 := inf

{
t ≥ t2 : max

k
max
j∈Nk

ckj(t) ≤ 1− 2C log
K

δ
α2

}
,

τ4 := inf

t ≥ t2 :
∑
j∈Nk

∥wj∥2 ≥ 1 + C log
K

δ
α2

 ,

and show that min{τ3, τ4} ≥ T ∗. We proof it by contradiction, suppose min{τ3, τ4} ≤ T ∗, then it must be either
τ3 = min{τ3, τ4} ≤ T ∗ or τ4 = min{τ3, τ4} ≤ T ∗.

Consider the first case that τ3 = min{τ3, τ4} ≤ T ∗, then there exists some k and j ∈ Nk and some τ3− ≥ t2 such that

1− 2C log
K

δ
α2 ≤ ckj(t) ≤ 1− C log

K

δ
α2,∀t ∈ [τ3− , τ3] , (G.8)

ckj(τ3−) = 1− C log
K

δ
α2, ckj(τ3) = 1− 2C log

K

δ
α2 (G.9)

since ckj(t) is continuous and has to travel from 1− C log K
δ α

2 to 1− 2C log K
δ α

2. By Lemma 6, we have

d

dt
ckj ≥ −CK log

K2N

δ
αmin{p,4} ,∀t ∈ [τ3− , τ3] .

Then by the fundamental theorem of calculus, we have

−C log
K

δ
α2 = ckj(τ3)− ckj(τ3−) =

∫ τ3

τ3−

d

dt
ckj ≥

∫ τ3

τ3−

−CK log
K2N

δ
αmin{p,4}

= −(τ3 − τ3−)CK log
K2N

δ
αmin{p,4} , (G.10)

Therefore, for some constant C > 0,

(τ3 − τ3−) ≥
C

log K2N
δ

αmax{2−p,−2} ⇒ (τ3 − t2) ≥
C

log K2N
δ

αmax{2−p,−2} . (G.11)

[t2, τ3] has length at least C

log K2N
δ

αmax{2−p,−2} thus is an interval that contains [t2, T ∗]. Contradicting our assumption that

τ3 ≤ T ∗. The case one is thus eliminated.

Consider the second case that τ4 = min{τ3, τ4} ≤ T ∗, then by the continuity of ∥wj∥, we know that there exists some k
such that

∑
j∈Nk

∥wj(τ4)∥2 = 1 + Cw log K
δ α

2. However, by Lemma 11, we have, at τ4,

d

dt

∑
j∈Nk

∥wj∥2
 ≤ 2

1−
∑
j∈Nk

∥wj∥2︸ ︷︷ ︸
=1+Cw log K

δ α2

+C log
K

δ
α2


∑

j∈Nk

∥wj∥2
 ,
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= 2

(
(C − Cw) log

K

δ
α2

)∑
j∈Nk

∥wj∥2
 < 0 ,

which indicates that
∑

j∈Nk
∥wj∥2 can not surpass 1 + Cw log K

δ α
2 after τ4, violating the definition of τ4, leading to a

contradiction. Therefore the second case is eliminated as well. We must have min{τ3, τ4} ≥ T ∗. The first claim is proved.

Second claim By Lemma 13 (it applies to any t ≤ T ∗ given the proof in our first step), we have

d

dt

∑
j∈Nk

∥wj∥2
∣∣∣∣∣∣∑

j∈Nk
∥wj∥2=1−Cw log K

δ α2

≥ 2

(
Cw log

K

δ
α2 − C log

K

δ
α2

)∑
j∈Nk

∥wj∥2
 ,

≥ 0 .

Therefore, whenever
∑

j∈Nk
∥wj(t)∥2 reaches 1−Cw log K

δ α
2, it can not drop below 1−Cw log K

δ α
2. The second claim

is proved.

Third claim Lastly, we just need an upper bound on the travel time for
∑

j∈Nk
∥wj(t)∥2 to go from

∑
j∈Nk

∥wj(t1)∥2 to
1− Cw log K

δ α
2, for which we simply combine Lemma 13, 14,and 15 to see the travel time is upper bounded by

2

(
log

1

(C − Cw) log
K
δ α

2
+

2pp+2K

p(p− 2)∆̃2∆̃
p−2
1

+ log
1

W 2
minϵ

2

)
. (G.12)

Thus
∑

j∈Nk
∥wj(t)∥2 must reach 1− Cw log K

δ α
2 by t∗.
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H. PReLU converges to optimal ℓ2-robust classifier, Part Five: Proofs for auxiliary lemmas
Lemma 5 (Restated). Given an initialization shape that satisfies Assumption 2 with non-degeneracy gap ∆ > 0, then for
j ∈ Nk, we have

ckj(0) = cos(µk,wj(0)) ≥

√
1

2

(
1

(1−∆)2
− 1

)
:= ∆̃1, (H.1)

cp−2
lj (0)

cp−2
kj (0)

≤ (1−
√
2∆)p−2 := 1− ∆̃2,∀l ̸= k with yl = yk and clj(0) > 0 (H.2)

Proof. We prove both inequalities by contradiction.

First inequality Suppose 0 < ckj(0) = cos(µk,wj(0)) = cos(µk,wj0) < ∆̃1, then consider w̃j0 =
wj0

∥wj0∥ , and

w̃ = w̃j0 −
ckj(0)

1− ckj(0)
(µk − w̃j0) . (H.3)

Notice that here ckj(0) = cos(µk,wj0) = ⟨µk, w̃j0⟩. It is easy to verify that ⟨µl, w̃⟩ = 0,∀1 ≤ l ≤ K, thus w̃ ∈
∂
(⋃

k∈KRk

)
, and

d

(
wj0, ∂

( ⋃
k∈K

Rk

))
= 1− sup

w∈∂
(⋃

k∈K Rk

) cos (w̃j0,w) ≤ 1− cos(w̃j0, w̃) , (H.4)

Since one can compute

cos(w̃j0, w̃) =
⟨w̃j0, w̃⟩
∥w̃j0∥∥w̃∥

=
1 + ckj(0)(1− ckj(0))√

1 + 2c2kj(0)
≥ 1√

1 + 2c2kj(0)
> 1−∆ , (H.5)

where the last inequality is due to our assumption that ckj(0) < ∆̃1. Combining (H.4)(H.5), we have

d

(
wj0, ∂

( ⋃
k∈K

Rk

))
< ∆ , (H.6)

which contradicts our assumption that the non-degeneracy gap is at least ∆.

Second inequality Suppose there exists an l ̸= k such that yl = yk and
cp−2
lj (0)

cp−2
kj (0)

> (1−
√
2∆)p−2 and clj(0) > 0, we pick

the l that has the largest clj(0), then consider w̃j0 =
wj0

∥wj0∥ , and

w̃ = w̃j0 −
ckj(0)− clj(0)

2
(µk − µl) . (H.7)

It can be verified that ∥w̃∥ = 1, cos(µk, w̃) = cos(µl, w̃) =
ckj(0)+clj(0)

2 , and cos(µm, w̃) = cos(µm, w̃j0) ≤
cos(µl, w̃),∀m ̸= k or l. All of the above together implies w̃ ∈ (∂Rk) ∩ (∂Rl) ⊂ ∂

(⋃
k∈KRk

)
, and

d

(
wj0, ∂

( ⋃
k∈K

Rk

))
= 1− sup

w∈∂
(⋃

k∈K Rk

) cos (w̃j0,w) ≤ 1− cos(w̃j0, w̃) , (H.8)

One can compute

cos(w̃j0, w̃) =
⟨w̃j0, w̃⟩
∥w̃j0∥∥w̃∥

= 1− (ckj(0)− clj(0))
2

2

≥ 1−

(
1− clj(0)

ckj(0)

)2
2
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≥ 1−

(
1−

(
cp−2
lj (0)

cp−2
kj (0)

) 1
p−2

)2

2

≥ 1−

(
1− (1− ∆̃2)

1
p−2

)2
2

= 1−∆ , (H.9)

where the last inequality is due to our assumption that
cp−2
lj (0)

cp−2
kj (0)

> (1−
√
2∆)p−2. Combining (H.4)(H.5), we have

d

(
wj0, ∂

( ⋃
k∈K

Rk

))
< ∆ , (H.10)

which contradicts our assumption that the non-degeneracy gap is at least ∆.

Lemma 6 (Restated). Let p > 2. Condition on good event Egood. Given some 1 ≤ k ≤ K and some j ∈ Nk and suppose
the following is true at some point on the GF trajectory:

1. ckj ≥ ∆̃1;

2. |clj |
ckj
≤ (1−

√
2∆),∀l ̸= k.

Then the following holds:

d

dt
ckj ≥ pcp−1

kj ∆̃2(1− ckj)− C1 log
K

δ
α2 − C2 max

k
|f (p)(µk;θ(t)| ,

for some universal constant C1, C2 that depends on p. If one further assume ckj ≥
√

4
5 , then the lower bound can be

improved as

d

dt
ckj ≥ pcp−1

kj

(
1− 1

2p−2

)
(1− ckj)− C1 log

K

δ
α2 − C2 max

i
|f (p)(xi;θ)| ,

Proof. When 1 ≤ k ≤ K1, j ∈ Nk implies that j ∈ N+ thus sign(vj) = 1. We shall primarily focus on this case as the
proof is nearly identical for K1 + 1 ≤ k ≤ K.

d

dt
ckj

= − 1

N

∑
i:⟨xi,wj⟩>0

∇ŷℓi p

(〈
xi,

wj

∥wj∥

〉)p−1(
⟨µk,xi⟩ −

〈
xi,

wj

∥wj∥

〉
ckj

)

=
1

N

∑
i:⟨xi,wj⟩>0

(yi − f (p)(xi;θ)) p

(〈
xi,

wj

∥wj∥

〉)p−1(
⟨µk,xi⟩ −

〈
xi,

wj

∥wj∥

〉
ckj

)

=
1

N

∑
i:⟨xi,wj⟩>0

yi p

(〈
xi,

wj

∥wj∥

〉)p−1(
⟨µk,xi⟩ −

〈
xi,

wj

∥wj∥

〉
ckj

)

− 1

N

∑
i:⟨xi,wj⟩>0

f (p)(xi;θ) p

(〈
xi,

wj

∥wj∥

〉)p−1(
⟨µk,xi⟩ −

〈
xi,

wj

∥wj∥

〉
ckj

)
︸ ︷︷ ︸

:=Γ1(will be treated later)

=


1

N

∑
i∈Ik:⟨xi,wj⟩>0

yi p

(〈
xi,

wj

∥wj∥

〉)p−1(
⟨µk,xi⟩ −

〈
xi,

wj

∥wj∥

〉
ckj

)
︸ ︷︷ ︸

(a)
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− 1

N

∑
l ̸=k

∑
i∈Il:⟨xi,wj⟩>0

yi p

(〈
xi,

wj

∥wj∥

〉)p−1(
⟨µk,xi⟩ −

〈
xi,

wj

∥wj∥

〉
ckj

)
︸ ︷︷ ︸

(b)

+ Γ1 (H.11)

We handle these two terms differently:

(a) =
1

N

∑
i∈Ik:⟨xi,wj⟩>0

yi p

(〈
xi,

wj

∥wj∥

〉)p−1(
⟨µk,xi⟩ −

〈
xi,

wj

∥wj∥

〉
ckj

)

=
1

N

∑
i∈Ik

p

(〈
µk + εi,

wj

∥wj∥

〉)p−1(
⟨µk,µk + εi⟩ −

〈
µk + εi,

wj

∥wj∥

〉
ckj

)

=
1

N

∑
i∈Ik

p

(〈
µk + εi,

wj

∥wj∥

〉)p−1(
1− c2kj + ⟨µk, εi⟩ −

〈
εi,

wj

∥wj∥

〉
ckj

)

=
1

N

∑
i∈Ik

p

(〈
µk + εi,

wj

∥wj∥

〉)p−1(
1− c2kj −

〈
εi,

wj

∥wj∥

〉
ckj

)

+
1

N

∑
i∈Ik

yi p

(〈
µk + εi,

wj

∥wj∥

〉)p−1

⟨µk, εi⟩︸ ︷︷ ︸
:=Γ2(will be treated later)

=
1

N

∑
i∈Ik

p

(
ckj +

〈
εi,

wj

∥wj∥

〉)p−1(
1− c2kj −

〈
εi,

wj

∥wj∥

〉
ckj

)
+ Γ2 (H.12)

With the Taylor expansion(
ckj +

〈
εi,

wj

∥wj∥

〉)p−1

= cp−1
kj + (p− 1)cp−2

kj

〈
εi,

wj

∥wj∥

〉
+RL

∣∣∣∣〈εi, wj

∥wj∥

〉∣∣∣∣2 , (H.13)

where RL =
(p−1)(p−2)(ckj+ζL)p−2

2 and ζL between 0 and
〈
εi,

wj

∥wj∥

〉
comes from the Lagrange residual. Clearly

|RL| ≤ 2p−3p2. Combining (H.12)(H.13), we have

(a)

= (H.12)

= pcp−1
kj (1− c2kj) +

(
−pcpkj + p(p− 1)cp−2

kj (1− c2kj)
)∑

i∈Ik

〈
εi,

wj

∥wj∥

〉

+
1

N

(
−p(p− 1)ckj + pRL(1− c2kj

)
)
∑
i∈Ik

∣∣∣∣〈εi, wj

∥wj∥

〉∣∣∣∣2
− 1

N
pckjRL

∑
i∈Ik

∣∣∣∣〈εi, wj

∥wj∥

〉∣∣∣∣2〈εi, wj

∥wj∥

〉
+ Γ2

≥ pcp−1
kj (1− c2kj)−

1

N
p2

∥∥∥∥∥∑
i∈Ik

εi

∥∥∥∥∥− 1

N
2p−1p2

∑
i∈Ik

∥εi∥2 −
1

N
2p−3p3

∑
i∈Ik

∥εi∥3 + Γ2

≥ pcp−1
kj (1− c2kj)−

1

N
p2

∥∥∥∥∥∑
i∈Ik

εi

∥∥∥∥∥− 1

N
2p−1p2

∑
i∈Ik

∥εi∥2 −
1

N
2p−3p3

∑
i∈Ik

∥εi∥2 max
i
∥εi∥+ Γ2

≥ pcp−1
kj (1− c2kj)− Cp2

√
log

K

δ

α√
N
− 2p−1p3C2 log

K

δ
α2 − 2p−3p3C3 log

K2N

δ
α3 + Γ2 . (H.14)
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We leave the bound as the last one for now and turn to the other term:

(b)

= − 1

N

∑
l ̸=k

∑
i∈Il:⟨xi,wj⟩>0

yi p

(〈
xi,

wj

∥wj∥

〉)p−1(
⟨µk,xi⟩ −

〈
xi,

wj

∥wj∥

〉
ckj

)

=
1

N

∑
l ̸=k

∑
i∈Il:⟨xi,wj⟩>0

yi p

(
clj +

〈
εi,

wj

∥wj∥

〉)p

ckj

− 1

N

∑
l ̸=k

∑
i∈Il:⟨xi,wj⟩>0

yi p

(
clj +

〈
εi,

wj

∥wj∥

〉)p−1

⟨µk, εi⟩︸ ︷︷ ︸
:=Γ3(will be treated later)

≥ − 1

N

∑
l ̸=k

∑
i∈Il

p

(
|clj |+

∣∣∣∣〈εi, wj

∥wj∥

〉∣∣∣∣)p

ckj + Γ3 (H.15)

With the Taylor expansion(
|clj |+

∣∣∣∣〈εi, wj

∥wj∥

〉∣∣∣∣)p

= |clj |p + p|clj |p−1

∣∣∣∣〈εi, wj

∥wj∥

〉∣∣∣∣+RL

∣∣∣∣〈εi, wj

∥wj∥

〉∣∣∣∣2 , (H.16)

where RL =
p(p−1)(|clj |+ζL)p−2

2 and ζL between 0 and
∣∣∣〈εi, wj

∥wj∥

〉∣∣∣ comes from the Lagrange residual. Clearly |RL| ≤
2p−2p2. Combining (H.12)(H.13), we have

(b)

= (H.15)

= −
∑
l ̸=k

p|clj |pckj −
1

N

∑
l ̸=k

∑
i∈Il

p(p− 1)|clj |p−1ckj

∣∣∣∣〈εi, wj

∥wj∥

〉∣∣∣∣− 1

N

∑
l ̸=k

∑
i∈Il

pRLckj

∣∣∣∣〈εi, wj

∥wj∥

〉∣∣∣∣2 + Γ3

≥ −
∑
l ̸=k

p|clj |pckj −
1

N

∑
l ̸=k

∑
i∈Il

p(p− 1)|clj |p−1ckj

∣∣∣∣〈εi, wj

∥wj∥

〉∣∣∣∣−K2p−2p3C2 log
K

δ
α2 + Γ3 ,

≥ −
∑
l ̸=k

p|clj |pckj −
1

N

∑
l ̸=k

∑
i∈Il

p(p− 1)|clj |p−1ckj

(
∥εi∥

√
1− c2kj + |⟨εi,µk⟩|

)
−K2p−2p3C2 log

K

δ
α2 + Γ3 ,

≥ −
∑
l ̸=k

p|clj |pckj −
∑
l ̸=k

p2|clj |p−1ckjC

√
log

K2N

δ
α
√
1− c2kj −K2p−2p3C2 log

K

δ
α2 + Γ3

+− 1

N

∑
l ̸=k

∑
i∈Il

p(p− 1)|clj |p−1ckj |⟨εi,µk⟩|︸ ︷︷ ︸
:=Γ4(will be treated later)

= −pcp−1
kj

∑
l ̸=k

|clj |p−2

cp−2
kj

|clj |2 −
∑
l ̸=k

p
|clj |p−2

cp−2
kj

|clj |C
√
log

K2N

δ
α
√

1− c2kj

−K2p−2p3C2 log
K

δ
α2 + Γ3 + Γ4

= −pcp−1
kj

(
max
l ̸=k

|clj |p−2

cp−2
kj

)∑
l ̸=k

|clj |2 −
∑
l ̸=k

p|clj |C
√
log

K2N

δ
α
√
1− c2kj

−K2p−2p3C2 log
K

δ
α2 + Γ3 + Γ4

≥ −pcp−1
kj

(
max
l ̸=k

|clj |p−2

cp−2
kj

)∑
l ̸=k

|clj |2 − pC

√
log

K2N

δ
α
√
1− c2kj

∑
l ̸=k

|clj |

−K2p−2p3C2 log
K

δ
α2 + Γ3 + Γ4

≥ −pcp−1
kj

(
max
l ̸=k

|clj |p−2

cp−2
kj

)∑
l ̸=k

|clj |2 − pC

√
K log

K2N

δ
α
√
1− c2kj

√∑
l ̸=k

|clj |2

−K2p−2p3C2 log
K

δ
α2 + Γ3 + Γ4
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≥ −pcp−1
kj

(
max
l ̸=k

|clj |p−2

cp−2
kj

(1− c2kj)

)(
1− pC

√
K log

K2N

δ
α(1− c2kj)

)
−K2p−2p3C2 log

K

δ
α2 + Γ3 + Γ4

≥ −p

2
cp−1
kj

(
max
l ̸=k

|clj |p−2

cp−2
kj

)
(1− c2kj)−K2p−2p3C2 log

K

δ
α2 + Γ3 + Γ4 (H.17)

Finally, combining (H.14)(H.17), we have

d

dt
ckj ≥ pcp−1

kj

(
1−max

l ̸=k

|clj |p−2

cp−2
kj

)
(1− c2kj)− C ′

1

√
log

K

δ

α√
N
− C ′

2 log
K

δ
α2 − C ′

3 log
K2N

δ
α3

− |Γ1| − |Γ2| − |Γ3| − |Γ4|

≥ pcp−1
kj

(
1−max

l ̸=k

|clj |p−2

cp−2
kj

)
(1− ckj)− C ′

1

√
log

K

δ

α√
N
− C ′

2 log
K

δ
α2 − C ′

3 log
K2N

δ
α3

− |Γ1| − |Γ2| − |Γ3| − |Γ4| ,

where the readers should be able to find universal constants C ′
1, C

′
2, C

′
3 from the derivation. It remains to bound these

|Γi|, i = 1, · · · , 4. Indeed, we can find the following bound:

|Γ1| =

∣∣∣∣∣∣ 1N
∑

i:⟨xi,wj⟩>0

f (p)(xi;θ) p

(〈
xi,

wj

∥wj∥

〉)p−1(
⟨µk,xi⟩ −

〈
xi,

wj

∥wj∥

〉
ckj

)∣∣∣∣∣∣
≤ max

i
|f (p)(xi;θ)|

1

N

∑
i:⟨xi,wj⟩>0

∣∣ p∥xi∥p−1 (2∥xi∥)
∣∣

≤ p2p+1 max
i
|f (p)(xi;θ)| ,

|Γ2| =

∣∣∣∣∣ 1N ∑
i∈Ik

yi p

(〈
µk + εi,

wj

∥wj∥

〉)p−1

⟨µk, εi⟩

∣∣∣∣∣
≤ 1

N

∑
i∈Ik

p∥xi∥p−1 |⟨µk, εi⟩| ≤ p2p−1C

√
log

K2N

δ

α√
D

|Γ3| =

∣∣∣∣∣∣− 1

N

∑
l ̸=k

∑
i∈Il:⟨xi,wj⟩>0

yi p

(
clj +

〈
εi,

wj

∥wj∥

〉)p−1

⟨µk, εi⟩

∣∣∣∣∣∣
≤ 1

N

∑
i∈Ik

p∥xi∥p−1 |⟨µk, εi⟩| ≤ p2p−1C

√
log

K2N

δ

α√
D

|Γ4| =

∣∣∣∣∣∣− 1

N

∑
l ̸=k

∑
i∈Il

p(p− 1)|clj |p−1ckj |⟨εi,µk⟩|

∣∣∣∣∣∣
≤ 1

N

∑
l ̸=k

∑
i∈Ik

p2 |⟨µk, εi⟩| ≤ Kp2C

√
log

K2N

δ

α√
D

.

With these norm bounds, we have

d

dt
ckj

≥ pcp−1
kj

(
1−max

l ̸=k

|clj |p−2

cp−2
kj

)
(1− c2kj)− C ′

1

√
log

K

δ

α√
N
− C ′

2 log
K

δ
α2

− C ′
3 log

K2N

δ
α3 − C ′

4 max
i
|f (p)(xi;θ)| − C ′

5

√
log

K2N

δ

α√
D
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≥ pcp−1
kj

(
1−max

l ̸=k

|clj |p−2

cp−2
kj

)
(1− ckj)− C1 log

K

δ
α2 − C2 max

i
|f (p)(xi;θ)| .

Lastly, our bound is

1. When we only assumed ckj ≥ ∆̃1:

d

dt
ckj ≥ pcp−1

kj

(
1−max

l ̸=k

|clj |p−2

cp−2
kj

)
(1− ckj)− C1 log

K

δ
α2 − C2 max

i
|f (p)(xi;θ)|

≥ pcp−1
kj ∆̃2(1− ckj)− C1 log

K

δ
α2 − C2 max

i
|f (p)(xi;θ)|

2. When we further assume ckj ≥
√

4
5 , we have that

∑
l ̸=k c

2
lj = 1− c2kj ≤ 1

5 , then maxl ̸=k |clj | ≤
√

1
5 . Therefore(

1−max
l ̸=k

|clj |p−2

cp−2
kj

)
=

(
1−

(
maxl ̸=k |clj |

ckj

)p−2
)
≥ 1− 1

2p−2
, (H.18)

which leads to

d

dt
ckj ≥ pcp−1

kj

(
1− 1

2p−2

)
(1− ckj)− C1 log

K

δ
α2 − C2 max

i
|f (p)(xi;θ)| .

Lemma 7 (Restated). Let p > 2. Condition on good event Egood. Given an initialization shape that satisfies Assumption 2
with non-degeneracy gap ∆ > 0, define

t1a := inf

{
t : max

i
|f (p)(xi;θ(t)| > min

{
∆̃p−1

1 ∆̃2(1− ∆̃1)

2p+1
,
∆̃p−1

1 ∆̃2(1−
√
2∆)

2K2p+1

}}
. (H.19)

Then the following holds ∀t ≤ t1a:

ckj(t) ≥ ckj(0) ≥ ∆̃1,∀1 ≤ k ≤ K, j ∈ Nk , (H.20)

and

|cp−2
lj (t)|
cp−2
kj (t)

≤
|cp−2

lj (0)|
cp−2
kj (0)

≤ 1− ∆̃2 . and ∀l ̸= k, j ∈ Nk . (H.21)

Proof. When 1 ≤ k ≤ K1, j ∈ Nk implies that j ∈ N+ thus sign(vj) = 1. We shall primarily focus on this case as the
proof is nearly identical for K1 + 1 ≤ k ≤ K.

Overview of the proof: We will prove by contradiction, we let τ1 := inf{t : ∃k, j ∈ Nk, s.t. ckj(t) < ckj(0)} and

τ2 := inf

{
t : ∃k, j ∈ Nk,&l ̸= k, s.t.

|cp−2
lj (t)|
ckj(t)

>
|cp−2

lj (0)|
ckj(0)

}
, by the continuity of every ckj(t) and every

|cp−2
lj (t)|
ckj(t)

on the

interval [0, τ1] and [0, τ2] respectively, we know that ckj(τ1) = ckj(0) for some k, j and
|cp−2

lj (τ2)|
ckj(τ2)

=
|cp−2

lj (0)|
ckj(0)

for some
k, j, l. If min{τ1, τ2} > t1a then there is nothing to be proved, otherwise, there are two cases:

1. When τ1 = min{τ1, τ2} ≤ t1a, we show that for the k, j such that ckj(τ1) = ckj(0)

d

dt
ckj

∣∣∣∣
t=τ1

≥ 0 , (H.22)

which says ckj(τ1 +∆t) ≥ ckj(0) for every sufficiently small ∆t, contradicting the definition of τ1.
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2. When τ2 = min{τ1, τ2} ≤ t1a, we show that for the k, j, l such that
|cp−2

lj (τ2)|
ckj(τ2)

=
|cp−2

lj (0)|
ckj(0)

d

dt
log
|clj |
ckj

∣∣∣∣
t=τ2

≤ 0 , (H.23)

which says |clj(τ1+∆t)|
ckj(τ1+∆t) ≤ ckj(0) for every sufficiently small ∆t (due to the monotonicity of log function), contradicting

the definition of τ2.

Time derivatives of log cosine angles We have shown in (E.6) that for every 1 ≤ l ≤ D, whenever |clj | > 0,

d

dt
log |clj |

= − 1

N

∑
i:⟨xi,wj⟩>0

∇ŷℓi p

(〈
xi,

wj

∥wj∥

〉)p−1( ⟨µl,xi⟩
clj

−
〈
xi,

wj

∥wj∥

〉)

= − 1

N

∑
i:⟨xi,wj⟩>0

∇ŷℓi p

(〈
xi,

wj

∥wj∥

〉)p−1 ⟨µl,xi⟩
clj

+
1

N

∑
i:⟨xi,wj⟩>0

∇ŷℓi p

(〈
xi,

wj

∥wj∥

〉)p

.

Case One: τ1 = min{τ1, τ2}. This case is relatively easier as we have already shown Lemma 6. For the k, j such that
ckj = ∆̃

d

dt
ckj

∣∣∣∣
t=τ1

≥ pcp−1
kj ∆̃2(1− ckj)− C1 log

K

δ
α2 − p2p+1 max

i
|f (p)(xi;θ)|︸ ︷︷ ︸
(∗)

,

by Lemma 6 (conditions are satisified at t = τ1 and one should be able to get (*) using the intermediate results in the proof
of Lemma 6). Then

d

dt
ckj

∣∣∣∣
t=τ1

≥ p∆̃p−1
1 ∆̃2(1− ∆̃1)− C1 log

K

δ
α2 − p2p+1 max

i
|f (p)(xi;θ)| ,

(τ1≤t1a)

≥ p∆̃p−1
1 ∆̃2(1− ∆̃1)− C1 log

K

δ
α2 − 1

2
p∆̃p−1

1 ∆̃2(1− ∆̃1)

≥ 1

2
p∆̃p−1

1 ∆̃2(1− ∆̃1)− C1 log
K

δ
α2 ≥ 0 ,

for sufficiently small α.

Case Two: τ2 = min{τ1, τ2}. For the k, j, l such that
|cp−2

lj (τ2)|
ckj(τ2)

=
|cp−2

lj (0)|
ckj(0)

, we have (although we omit the notation, all
the derivations are at τ2, so that clj can appear in the denominator of a fraction.)

d

dt
log
|clj |
ckj

=
d

dt
log |clj | −

d

dt
log ckj

= − 1

N

∑
i:⟨xi,wj⟩>0

∇ŷℓi p

(〈
xi,

wj

∥wj∥

〉)p−1( ⟨µl,xi⟩
clj

− ⟨µk,xi⟩
ckj

)

=
1

N

∑
i:⟨xi,wj⟩>0

(yi − f (p)(xi;θ)) p

(〈
xi,

wj

∥wj∥

〉)p−1( ⟨µl,xi⟩
clj

− ⟨µk,xi⟩
ckj

)
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=
1

N

∑
i:⟨xi,wj⟩>0

yi p

(〈
xi,

wj

∥wj∥

〉)p−1( ⟨µl,xi⟩
clj

− ⟨µk,xi⟩
ckj

)

− 1

N

∑
i:⟨xi,wj⟩>0

f (p)(xi;θ) p

(〈
xi,

wj

∥wj∥

〉)p−1( ⟨µl,xi⟩
clj

− ⟨µk,xi⟩
ckj

)
︸ ︷︷ ︸

:=Γ1

=
1

N

∑
i∈Ik:⟨xi,wj⟩>0

yi p

(〈
µk + εi,

wj

∥wj∥

〉)p−1( ⟨µl,µk + εi⟩
clj

− ⟨µk,µk + εi⟩
ckj

)
1

N

∑
i∈Il:⟨xi,wj⟩>0

yi p

(〈
µl + εi,

wj

∥wj∥

〉)p−1( ⟨µl,µl + εi⟩
clj

− ⟨µk,µl + εi⟩
ckj

)
1

N

∑
1≤l′≤K
l′ ̸=l,l′ ̸=k

∑
i∈Il′ :⟨xi,wj⟩>0

yi p

(〈
µl′ + εi,

wj

∥wj∥

〉)p−1( ⟨µl,µl′ + εi⟩
clj

− ⟨µk,µl′ + εi⟩
ckj

)
+ Γ1

=
1

N

∑
i∈Ik:⟨xi,wj⟩>0

yi p

(
ckj +

〈
εi,

wj

∥wj∥

〉)p−1(
− 1

ckj
+
⟨µl, εi⟩
clj

− ⟨µk, εi⟩
ckj

)
1

N

∑
i∈Il:⟨xi,wj⟩>0

yi p

(
clj +

〈
εi,

wj

∥wj∥

〉)p−1(
1

clj
+
⟨µl, εi⟩
clj

− ⟨µk, εi⟩
ckj

)
1

N

∑
1≤l′≤K
l′ ̸=l,l′ ̸=k

∑
i∈Il′ :⟨xi,wj⟩>0

yi p

(
cl′j +

〈
εi,

wj

∥wj∥

〉)p−1( ⟨µl, εi⟩
clj

− ⟨µk, εi⟩
ckj

)
+ Γ1

=
1

N

∑
i∈Ik:⟨xi,wj⟩>0

yi p

(
ckj +

〈
εi,

wj

∥wj∥

〉)p−1(
− 1

ckj

)
1

N

∑
i∈Il:⟨xi,wj⟩>0

yi p

(
clj +

〈
εi,

wj

∥wj∥

〉)p−1(
1

clj

)
+ Γ1 + Γ2 , (H.24)

We view Γ1,Γ2 as “perturbation term” and will control their norms later. For the first two terms in (H.24), we have,
respectively:

1

N

∑
i∈Ik:⟨xi,wj⟩>0

yi p

(
ckj +

〈
εi,

wj

∥wj∥

〉)p−1(
− 1

ckj

)

= − p

N

∑
i∈Ik

(
ckj +

〈
εi,

wj

∥wj∥

〉)p−1
1

ckj

= − p

N

∑
i∈Ik

cp−2
kj

1−

∣∣∣〈εi, wj

∥wj∥

〉∣∣∣
ckj

p−1

≤ − p

N

∑
i∈Ik

cp−2
kj

1−

∣∣∣〈εi, wj

∥wj∥

〉∣∣∣
ckj

p−1

≤ − p

N

∑
i∈Ik

cp−2
kj

1− (p− 1)

∣∣∣〈εi, wj

∥wj∥

〉∣∣∣
ckj


≤ −pcp−2

kj + p(p− 1)
maxi ∥εi∥
ckj(0)

≥ −pcp−2
kj + p(p− 1)

√
8 log

4K2N

δ
α ,
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and similarly,

1

N

∑
i∈Il:⟨xi,wj⟩>0

yi p

(
clj +

〈
εi,

wj

∥wj∥

〉)p−1(
1

clj

)

≤ p

N

∑
i∈Il:⟨xi,wj⟩>0

|yi| |clj |p−2

1 +

∣∣∣〈εi, wj

∥wj∥

〉∣∣∣
clj

p−1

≤ p

N

∑
i∈Il:⟨xi,wj⟩>0

|clj |p−2

1 + (p− 1)

∣∣∣〈εi, wj

∥wj∥

〉∣∣∣
clj


{
≤ p|clj |p−2 + p(p− 1)

√
8 log 4K2N

δ α, 1 ≤ l ≤ K

= 0, K < l ≤ D

Therefore we have

d

dt
log
|clj |
ckj
≤ −p(cp−2

kj − |clj |
p−21l≤K) + 2p(p− 1)

√
8 log

4K2N

δ
α− |Γ1| − |Γ2|

≤ −p(cp−2
kj − |clj |

p−2) + 2p(p− 1)

√
8 log

4K2N

δ
α− |Γ1| − |Γ2|

≤ −pcp−2
kj

(
1− |clj |

p−2

cp−2
kj

)
+ 2p(p− 1)

√
8 log

4K2N

δ
α− |Γ1| − |Γ2|

≤ −p∆̃p−2
1 ∆̃2 + 2p(p− 1)

√
8 log

4K2N

δ
α− |Γ1| − |Γ2| .

It remains to bound these |Γ1|, |Γ2|. Indeed, we can find the following bound6 (note that at τ2, we have |clj | = ckj(1−
√
2∆))

and ckj ≥ ∆̃1):

|Γ1| =

∣∣∣∣∣∣ 1N
∑

i:⟨xi,wj⟩>0

f (p)(xi;θ) p

(〈
xi,

wj

∥wj∥

〉)p−1( ⟨µl,xi⟩
clj

− ⟨µk,xi⟩
ckj

)∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1N
∑

1≤i≤KN

|f (p)(xi;θ)| p
∣∣∣∣〈xi,

wj

∥wj∥

〉∣∣∣∣p−1
(
| ⟨µl,xi⟩ |

ckj(1−
√
2∆)

+
| ⟨µk,xi⟩ |

ckj

)∣∣∣∣∣∣
≤ max

i
|f (p)(xi;θ)|

Kp2p+1

∆̃1(1−
√
2∆)

(τ2≤t1a)

≤ 1

2
p∆̃p−2

1 ∆̃2 ,

|Γ2| =

∣∣∣∣∣∣ 1N
∑

i:⟨xi,wj⟩>0

yi p

(〈
xi,

wj

∥wj∥

〉)p−1( ⟨µl, εi⟩
clj

− ⟨µk, εi⟩
ckj

)∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1N
∑

1≤i≤KN

p

∣∣∣∣〈xi,
wj

∥wj∥

〉∣∣∣∣p−1
(
| ⟨µl, εi⟩ |

ckj(1−
√
2∆)

+
| ⟨µk, εi⟩ |

ckj

)∣∣∣∣∣∣
≤ max

i,k
| ⟨µk, εi⟩ |

Kp2p+1

∆̃1(1−
√
2∆)

≤ CKp2p+1

∆̃1(1−
√
2∆)

√
log

K2N

δ

α√
D

Finally, we arrived at

d

dt
log
|clj |
ckj

∣∣∣∣
t=τ2

6It may take some time to recollect the terms we omitted in (H.24) and regroup them into Γ2
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≤ −p∆̃p−2
1 ∆̃2 + 2p(p− 1)

√
8 log

4K2N

δ
α+

1

2
p∆̃p−2

1 ∆̃2 +
CKp2p+1

∆̃1(1−
√
2∆)

√
log

K2N

δ

α√
D

≤ −1

2
p∆̃p−2

1 ∆̃2 + 2p(p− 1)

√
8 log

4K2N

δ
α+

CKp2p+1

∆̃1(1−
√
2∆)

√
log

K2N

δ

α√
D
≤ 0 , (H.25)

for sufficiently small α.

Lemma 8 (Restated). Let p > 2. Condition on good event Egood, then with any balanced initialization scale ϵ ≤ 1
4
√
hW 2

max

,
the solution to gradient flow dynamics satisfies

max
k
|f (p)(µk;θ(t))| ≤ 2ϵ

√
hW 2

max , ∀t ≤ 1

2p+2K
log

(
1

2p−1
√
hϵ

)
. (H.26)

Proof. Let T := inf{t : maxi |f(xk;θ(t))| > 2ϵ
√
hW 2

max}, then ∀t ≤ T, j ∈ [h], we have

d

dt
∥wj∥2 = −2 sign(vj(0))

N

 ∑
i:⟨xi,wj⟩>0

∇ŷℓi

(〈
xi,

wj

∥wj∥

〉)p
 ∥wj∥2

≤ 2
1

N

KN∑
i=1

|∇ŷℓi|∥wj∥2
(⟨xi,wj⟩)p

∥wj∥p

≤ 2
1

N

KN∑
i=1

|∇ŷℓi|∥wj∥2∥xi∥p

≤ 2p+1

N

KN∑
i=1

(1 + |f(xk;θ(t))|)∥wj∥2

≤ 2p+1

N

KN∑
i=1

(1 + 4ϵ
√
hW 2

max)∥wj∥2

≤ 2p+1K(1 + 4ϵ
√
hW 2

max)∥wj∥2 . (H.27)

Let τj := inf{t : ∥wj(t)∥2 > 2ϵM2

2p−1
√
h
}, and let j∗ := argminj τj , then τj∗ = minj τj ≤ T due to the fact that

|f(xi;θ)| =

∣∣∣∣∣∣
∑
j∈[h]

1⟨wj ,xi⟩>0vj
(⟨wj ,xk⟩)p

∥wj∥p−1

∣∣∣∣∣∣ ≤ 2p
∑
j∈[h]

∥wj∥2 ≤ 2phmax
j∈[h]

∥wj∥2 ,

which implies ”|f(xk;θ(t))| > 2ϵ
√
hW 2

max ⇒ ∃j, s.t.∥wj(t)∥2 >
ϵW 2

max

2p−1
√
h

”.

Then for t ≤ τj∗ , we have
d

dt
∥wj∗∥2 ≤ 2p+1K(+4ϵ

√
hW 2

max)∥wj∗∥2 . (H.28)

By Gr’́onwall’s inequality, we have ∀t ≤ τj∗

∥wj∗(t)∥2 ≤ exp
(
2p+1K(1 + 4ϵ

√
hW 2

max)t
)
∥wj∗(0)∥2 ,

= exp
(
2p+1K(1 + 4ϵ

√
hW 2

max)t
)
ϵ2∥wj∗0∥2

≤ exp
(
2p+1K(1 + 4ϵ

√
hW 2

max)t
)
ϵ2W 2

max .

Suppose τj∗ < 1
2p+2K log

(
1

2p−1
√
hϵ

)
, then by the continuity of ∥wj∗(t)∥2, we have

2ϵW 2
max

2p−1
√
h
≤ ∥wj∗(τj∗)∥2 ≤ exp

(
2p+1K(1 + 4ϵ

√
hW 2

max)τj∗
)
ϵ2W 2

max
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≤ exp

(
2p+1K(1 + 4ϵ

√
hW 2

max)
1

2p+2K
log

(
1

2p−1
√
hϵ

))
ϵ2W 2

max

≤ exp

(
1 + 4ϵ

√
hW 2

max

2
log

(
1

2p−1
√
hϵ

))
ϵ2W 2

max

≤ exp

(
log

(
1

2p−1
√
hϵ

))
ϵ2W 2

max =
ϵW 2

max

2p−1
√
h
,

which leads to a contradiction 2ϵ ≤ ϵ. Therefore, one must have T ≥ τj∗ ≥ 1
2p+2K log

(
1

2p−1
√
hϵ

)
. This finishes the

proof.

Lemma 9 (Restated). Let p > 2. Given some C > 0, if for some z(t), the following holds

d

dt
z ≥ Czp−1 ,∀t ∈ [0, T ], z(0) = z0, z(T ) = z1 , (H.29)

for some 0 < z0 ≤ z1 < 1. Then the travel time T for z(t) to go from z0 to z1 satifies:

T ≤ 1

(p− 2)Czp−2
0

. (H.30)

Proof. We have ∫ z1

z0

1

Czp−1
dz ≥

∫ T

0

dt , (H.31)

thus

T ≤ 1

(p− 2)C

(
1

zp−2
0

− 1

zp−2
1

)
≤ 1

(p− 2)Czp−2
0

. (H.32)

Lemma 10 (Restated). Let p > 2. Given some C > 0, if for some z(t), the following holds

d

dt
z ≥ C(1− z) ,∀t ∈ [0, T ], z(0) = z0, z(T ) = z1 , (H.33)

for some 0 < z0 ≤ z1 < 1. Then the travel time T for z(t) to go from z0 to z1 satifies:

T ≤ 1

C
log

1

1− z1
. (H.34)

Proof. We have ∫ z1

z0

1

C(1− z)
dz ≥

∫ T

0

dt , (H.35)

thus

T ≤ 1

C

(
log

1− z0
1− z1

)
≤ 1

C
log

1

1− z1
. (H.36)

Lemma 11 (Restated). Let p > 2. Condition on good event Egood. Suppose the following is true at some point on the GF
trajectory:

1. ckj(t) ≥ 1− 2Ca log
K
δ α

2, ∀k, j ∈ Nk;

2.
∑

j∈Nk
∥wj∥2 ≤ 1 + Cw log K

δ α
2, ∀k;

3.
∑

j∈Nc
∥wj∥2 = õ(α2) .
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Then the following holds for every 1 ≤ k ≤ K, i ∈ Ik,

f (p)(xi;θ) ≤
∑
j∈Nk

∥wj∥2
(
1 + 2p+2C

√
log

K2N

δ
α2

)
+ 2KCαp ;

f (p)(xi;θ) ≥
∑
j∈Nk

∥wj∥2
(
1− 4pC

√
log

K2N

δ
α2

)
− 2KCαp .

Proof. Our proof ignores terms related to neurons in Nc as they only introduce a õ(α2) perturbation.

f (p)(xi;θ)

=

h∑
j=1

vj
σp(⟨wj ,xi⟩)
∥wj∥p−1

=

h∑
j=1

∥wj∥2σp

(〈
wj

∥wj∥
,xi

〉)

=
∑
j∈Nk

∥wj∥2
(〈

wj

∥wj∥
,xi

〉)p

+
∑
l ̸=k

∑
j∈Nl

∥wj∥2σp

(〈
wj

∥wj∥
,xi

〉)

=
∑
j∈Nk

∥wj∥2
(
ckj +

〈
wj

∥wj∥
, εi

〉)p

+
∑
l ̸=k

∑
j∈Nl

∥wj∥2σp

(
clj +

〈
wj

∥wj∥
, εi

〉)
(H.37)

Upper bound:

f (p)(xi;θ)

= (H.37)

≤
∑
j∈Nk

∥wj∥2
(
ckj +

∣∣∣∣〈 wj

∥wj∥
, εi

〉∣∣∣∣)p

︸ ︷︷ ︸
(a)

+

∣∣∣∣∣∣
∑
l ̸=k

∑
j∈Nl

∥wj∥2σp

(
clj +

〈
wj

∥wj∥
, εi

〉)∣∣∣∣∣∣︸ ︷︷ ︸
(b)

.

For the first term, we have

(a) ≤
∑
j∈Nk

∥wj∥2
(
1 + ∥εi∥

√
1− c2kj + | ⟨µk, εi⟩ |

)p
≤
∑
j∈Nk

∥wj∥2
(
1 + ∥εi∥

√
2(1− ckj) + | ⟨µk, εi⟩ |

)p

≤
∑
j∈Nk

∥wj∥2
(
1 + 2C

√
log

K2N

δ
α2 + C

√
log

K2N

δ

α√
D

)p

≤
∑
j∈Nk

∥wj∥2
(
1 + 2p+2C

√
log

K2N

δ
α2

)
,

for sufficiently small α. For the second term, we have

(b) ≤ 2
∑
l ̸=k

(
|clj |+

∣∣∣∣〈εi, wj

∥wj∥

〉∣∣∣∣)p

≤ 2K
(√

1− c2kj + ∥εi∥
√

1− c2kj + | ⟨µk, εi⟩ |
)p

≤ 2K

(√
2(1− ckj) + ∥εi∥

√
(1− ckj) + | ⟨µk, εi⟩ |

)p
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≤ 2K

(
Cα+ C

√
log

K2N

δ
α2 + C

√
log

K2N

δ

α√
D

)p

≤ 2KCαp . (H.38)

Therefore

f (p)(xi;θ) ≤
∑
j∈Nk

∥wj∥2
(
1 + 2p+2C

√
log

K2N

δ
α2

)
+ 2KCαp . (H.39)

Lower bound:

f (p)(xi;θ)

= (H.37)

≥
∑
j∈Nk

∥wj∥2
(
ckj +

∣∣∣∣〈 wj

∥wj∥
, εi

〉∣∣∣∣)p

︸ ︷︷ ︸
(a)

−

∣∣∣∣∣∣
∑
l ̸=k

∑
j∈Nl

∥wj∥2σp

(
clj +

〈
wj

∥wj∥
, εi

〉)∣∣∣∣∣∣︸ ︷︷ ︸
≤(H.38)

.

For the first term, we have

(a) ≥
∑
j∈Nk

∥wj∥2
(
1− ∥εi∥

√
1− c2kj − | ⟨µk, εi⟩ |

)p
≥
∑
j∈Nk

∥wj∥2
(
1− ∥εi∥

√
2(1− ckj)− | ⟨µk, εi⟩ |

)p

≥
∑
j∈Nk

∥wj∥2
(
1− 2C

√
log

K2N

δ
α2 − C

√
log

K2N

δ

α√
D

)p

≥
∑
j∈Nk

∥wj∥2
(
1− 4pC

√
log

K2N

δ
α2

)
,

for sufficiently small α. Therefore

f (p)(xi;θ) ≥
∑
j∈Nk

∥wj∥2
(
1− 4pC

√
log

K2N

δ
α2

)
− 2KCαp . (H.40)

Lemma 12 (Restated). Let p > 2. Condition on good event Egood. Suppose the following is true at some point on the GF
trajectory:

1. ckj(t) ≥ 1− 2Ca log
K
δ α

2, ∀k, j ∈ Nk;

2.
∑

j∈Nk
∥wj∥2 ≤ 1 + Cw log K

δ α
2, ∀k;

3.
∑

j∈Nc
∥wj∥2 = õ(α2) .

Furthermore, suppose additionally that for some k, j ∈ Nk:

1− 2Ca log
K

δ
α2 ≤ ckj(t) ≤ 1− Ca log

K

δ
α2;

Then the following holds for the same k, j,

d

dt
ckj ≥ −CK log

K2N

δ
αmin{p,4} .
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Proof. When 1 ≤ k ≤ K1, j ∈ Nk implies that j ∈ N+ thus sign(vj) = 1. We shall primarily focus on this case as the
proof is nearly identical for K1 + 1 ≤ k ≤ K.

d

dt
ckj

= − 1

N

∑
i:⟨xi,wj⟩>0

∇ŷℓi p

(〈
xi,

wj

∥wj∥

〉)p−1(
⟨µk,xi⟩ −

〈
xi,

wj

∥wj∥

〉
ckj

)

=
1

N

∑
i:⟨xi,wj⟩>0

(yi − f (p)(xi;θ)) p

(〈
xi,

wj

∥wj∥

〉)p−1(
⟨µk,xi⟩ −

〈
xi,

wj

∥wj∥

〉
ckj

)

=
1

N

∑
i∈Ik

1−
∑
j∈Nk

∥wj∥2
 p

(〈
xi,

wj

∥wj∥

〉)p−1(
⟨µk,xi⟩ −

〈
xi,

wj

∥wj∥

〉
ckj

)
︸ ︷︷ ︸

(a)

+
1

N

∑
i∈Ik

∑
j∈Nk

∥wj∥2 − f (p)(xi;θ)

 p

(〈
xi,

wj

∥wj∥

〉)p−1(
⟨µk,xi⟩ −

〈
xi,

wj

∥wj∥

〉
ckj

)
︸ ︷︷ ︸

(b)

+
1

N

∑
l ̸=k

∑
i∈Il:⟨xi,wj⟩>0

(yi − f (p)(xi;θ)) p

(〈
xi,

wj

∥wj∥

〉)p−1(
⟨µk,xi⟩ −

〈
xi,

wj

∥wj∥

〉
ckj

)
︸ ︷︷ ︸

(c)

. (H.41)

We deal with these terms one by one:

Since
∑

j∈Nk
∥wj∥2 ≤ 1 + Cα2, for (a), there are two cases:

1. When 1−
∑

j∈Nk
∥wj∥2 ≥ 0, Follow the same derivations from (H.12) to (H.14), we have

(a) =

1−
∑
j∈Nk

∥wj∥2
 1

N

∑
i∈Ik

p

(〈
xi,

wj

∥wj∥

〉)p−1(
⟨µk,xi⟩ −

〈
xi,

wj

∥wj∥

〉
ckj

)

≥

1−
∑
j∈Nk

∥wj∥2
(pcp−1

kj (1− c2kj)− Cp2
√
log

K

δ

α√
N
− 2p−1p3C2 log

K

δ
α2 − o(α2)

)

≥

1−
∑
j∈Nk

∥wj∥2
(p(1− Cα2)p−1

(
Cα2 − C2

4
α4

)
− Cp2

√
log

K

δ

α√
N
− 2p−1p3C2 log

K

δ
α2 − o(α2)

)
≥ 0 ,

for some choice of C and sufficiently small α.

2. When −Cα2 ≤ 1−
∑

j∈Nk
∥wj∥2 ≤ 0, we have

(a) =

1−
∑
j∈Nk

∥wj∥2
 1

N

∑
i∈Ik

p

(〈
xi,

wj

∥wj∥

〉)p−1(
⟨µk,xi⟩ −

〈
xi,

wj

∥wj∥

〉
ckj

)

≥ −

∣∣∣∣∣∣1−
∑
j∈Nk

∥wj∥2
∣∣∣∣∣∣ 1

N

∑
i∈Ik

p

(〈
xi,

wj

∥wj∥

〉)p−1(
1− c2kj + | ⟨µk, εi⟩ |+

∣∣∣∣〈εi, wj

∥wj∥

〉∣∣∣∣ ckj)

≥ −

∣∣∣∣∣∣1−
∑
j∈Nk

∥wj∥2
∣∣∣∣∣∣ p2p−1

(
1− c2kj + 2| ⟨µk, εi⟩ |+ ∥εi∥

√
1− c2kjckj

)
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≥ C

√
log

K2N

δ
α4 , (H.42)

Therefore, we always have

(a) ≥ C

√
log

K2N

δ
α4 . (H.43)

The second term (b) is easy: by Lemma 11, we know that
∣∣∣∑j∈Nk

∥wj∥2 − f (p)(xi;θ)
∣∣∣ = O(√log K2N

δ α2), then by the
a similar derivation as in (H.42), we have

(b) =
1

N

∑
i∈Ik

∑
j∈Nk

∥wj∥2 − f (p)(xi;θ)

 p

(〈
xi,

wj

∥wj∥

〉)p−1(
⟨µk,xi⟩ −

〈
xi,

wj

∥wj∥

〉
ckj

)

≥ −

∣∣∣∣∣∣
∑
j∈Nk

∥wj∥2 − f (p)(xi;θ)

∣∣∣∣∣∣ 1

N

∑
i∈Ik

p

(〈
xi,

wj

∥wj∥

〉)p−1(
1− c2kj + | ⟨µk, εi⟩ |+

∣∣∣∣〈εi, wj

∥wj∥

〉∣∣∣∣ ckj)

≥ C log
K2N

δ
α4 , (H.44)

For the last term, we have

(c) =
1

N

∑
l ̸=k

∑
i∈Il:⟨xi,wj⟩>0

(yi − f (p)(xi;θ)) p

(〈
xi,

wj

∥wj∥

〉)p−1(
⟨µk,xi⟩ −

〈
xi,

wj

∥wj∥

〉
ckj

)

≥ − 2

N

∑
l ̸=k

∑
i∈Il

p

(
clj +

∣∣∣∣〈εi, wj

∥wj∥

〉∣∣∣∣)p−1(
⟨µk, εi⟩+ cljckj +

∣∣∣∣〈εi, wj

∥wj∥

〉∣∣∣∣ ckj)

≥ − 2

N

∑
l ̸=k

∑
i∈Il

p
(√

1− c2kj + ∥εi∥
√
1− c2kj

)p−1 (
⟨µk, εi⟩+

√
1− c2kjckj + ∥εi∥

√
1− c2kjckj

)
≥ −CK

√
log

K2N

δ
αp .

Finally, we can conclude that
d

dt
ckj ≥ −CK log

K2N

δ
αmin{p,4} . (H.45)

Lemma 13 (Restated). Let p > 2. Condition on good event Egood. Suppose the following is true at some point on the GF
trajectory :

1. ckj(t) ≥ 1− 2Ca log
K
δ α

2, k, j ∈ Nk;

2.
∑

j∈Nk
∥wj∥2 ≤ 1 + Cw log K

δ α
2, ∀k;

3.
∑

j∈Nc
∥wj∥2 = õ(α2) .

Then the following holds for every 1 ≤ k ≤ K,

d

dt

∑
j∈Nk

∥wj∥2
 ≤ 2

1−
∑
j∈Nk

∥wj∥2 + C log
K

δ
α2

∑
j∈Nk

∥wj∥2
 ,

and

d

dt

∑
j∈Nk

∥wj∥2
 ≥ 2

1−
∑
j∈Nk

∥wj∥2 − C log
K

δ
α2

∑
j∈Nk

∥wj∥2
 ,

where C is some universal constant such that C < Cw.
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Proof. When 1 ≤ k ≤ K1, j ∈ Nk implies that j ∈ N+ thus sign(vj) = 1. We shall primarily focus on this case as the
proof is nearly identical for K1 + 1 ≤ k ≤ K. We start with (E.3):

d

dt
∥wj∥2 =

2

N

 ∑
i:⟨xi,wj⟩>0

(yi − f (p)(xi;θ))

(〈
xi,

wj

∥wj∥

〉)p
 ∥wj∥2

= 2


1

N

∑
i∈Ik:⟨xi,wj⟩>0

(yi − f (p)(xi;θ))

(〈
xi,

wj

∥wj∥

〉)p

︸ ︷︷ ︸
(a)

+
1

N

∑
l ̸=k

∑
i∈Il:⟨xi,wj⟩>0

(yi − f (p)(xi;θ))

(〈
xi,

wj

∥wj∥

〉)p

︸ ︷︷ ︸
:=Γ1

 ∥wj∥2

For the first term, we have

(a) =
1

N

∑
i∈Ik:⟨xi,wj⟩>0

(yi − f (p)(xi;θ))

(〈
xi,

wj

∥wj∥

〉)p

=
1

N

∑
i∈Ik

(1− f (p)(xi;θ))

(〈
xi,

wj

∥wj∥

〉)p

=
1

N

∑
i∈Ik

1−
∑
j∈Nk

∥wj∥2
(〈

xi,
wj

∥wj∥

〉)p

+
∑
l ̸=k

∑
j∈Nl

∥wj∥2σp

(〈
xi,

wj

∥wj∥

〉)(〈xi,
wj

∥wj∥

〉)p

=
1

N

∑
i∈Ik

1−
∑
j∈Nk

∥wj∥2
(〈

xi,
wj

∥wj∥

〉)p
(〈xi,

wj

∥wj∥

〉)p

+
1

N

∑
i∈Ik

∑
l ̸=k

∑
j∈Nl

∥wj∥2σ2p

(〈
xi,

wj

∥wj∥

〉)
︸ ︷︷ ︸

:=Γ2

.

=
1

N

∑
i∈Ik

1−
∑
j∈Nk

∥wj∥2
(
ckj +

〈
εi,

wj

∥wj∥

〉)p
(ckj +〈εi, wj

∥wj∥

〉)p

+ Γ2 .

We shall focus on the first term. With the Taylor expansion(
ckj +

〈
εi,

wj

∥wj∥

〉)p

= cpkj + pcp−1
kj

〈
εi,

wj

∥wj∥

〉
+RL

∣∣∣∣〈εi, wj

∥wj∥

〉∣∣∣∣2 , (H.46)

where RL =
p(p−1)(ckj+ζL)p−2

2 and ζL between 0 and
∣∣∣〈εi, wj

∥wj∥

〉∣∣∣ comes from the Lagrange residual. Clearly |RL| ≤
2p−2p2. Then we have

1

N

∑
i∈Ik

1−
∑
j∈Nk

∥wj∥2
(
ckj +

〈
εi,

wj

∥wj∥

〉)p
(ckj +〈εi, wj

∥wj∥

〉)p

=cpkj −
∑
j∈Nk

∥wj∥2c2pkjpcp−1
kj − 2

∑
j∈Nk

∥wj∥2c2p−1
kj

 1

N

∑
i∈Ik

〈
εi,

wj

∥wj∥

〉
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(
RL − p2c2p−2

kj − 2cpkjRL

) 1

N

∑
i∈Ik

∣∣∣∣〈εi, wj

∥wj∥

〉∣∣∣∣2 + o

(∣∣∣∣〈εi, wj

∥wj∥

〉∣∣∣∣2
)

Finally, we are ready to derive the upper and lower bound. For lower bound,

d

dt
∥wj∥2

= 2 ((a) + Γ1) ∥wj∥2

≥ 2

 1

N

∑
i∈Ik

1−
∑
j∈Nk

∥wj∥2
(
ckj +

〈
εi,

wj

∥wj∥

〉)p
(ckj +〈εi, wj

∥wj∥

〉)p

− |Γ1| − |Γ2|

 ∥wj∥2

≥ 2

cpkj −
∑
j∈Nk

∥wj∥2c2pkj − C1
1

N

∣∣∣∣∣
〈∑

i∈Ik

εi,
wj

∥wj∥

〉∣∣∣∣∣− C2
1

N

∑
i∈Ik

∣∣∣∣〈εi, wj

∥wj∥

〉∣∣∣∣2

−o

(∣∣∣∣〈εi, wj

∥wj∥

〉∣∣∣∣2
)
− |Γ1| − |Γ2|

)
∥wj∥2

≥ 2

cpkj −
∑
j∈Nk

∥wj∥2c2pkj − C

√
log

K

δ

α√
N
− C2 log

K

δ
α2 − o(α2)− |Γ1| − |Γ2|

 ∥wj∥2

≥ 2

(1− Cα2

2

)p

−
∑
j∈Nk

∥wj∥2 − C

√
log

K

δ

α√
N
− C2 log

K

δ
α2 − o(α2)− |Γ1| − |Γ2|

 ∥wj∥2

≥ 2

1− p
Cα2

2
−
∑
j∈Nk

∥wj∥2 − C

√
log

K

δ

α√
N
− C2 log

K

δ
α2 − o(α2)− |Γ1| − |Γ2|

 ∥wj∥2

It remains to bound these |Γ1|, |Γ2|. Indeed, we can find the following bound:

|Γ1| =

∣∣∣∣∣∣ 1N
∑
l ̸=k

∑
i∈Il:⟨xi,wj⟩>0

(yi − f (p)(xi;θ))

(〈
xi,

wj

∥wj∥

〉)p
∣∣∣∣∣∣

≤

∣∣∣∣∣∣ 1N
∑
l ̸=k

∑
i∈Il

|yi − f (p)(xi;θ))|
(〈

xi,
wj

∥wj∥

〉)p
∣∣∣∣∣∣

≤

∣∣∣∣∣∣ 2N
∑
l ̸=k

∑
i∈Il

(〈
xi,

wj

∥wj∥

〉)p
∣∣∣∣∣∣

≤

∣∣∣∣∣∣ 2N
∑
i∈Il

∑
l ̸=k

(〈
xi,

wj

∥wj∥

〉)p
∣∣∣∣∣∣

≤

∣∣∣∣∣∣ 2N
∑
i∈Il

∑
l ̸=k

(
clj +

〈
εi,

wj

∥wj∥

〉)p
∣∣∣∣∣∣

≤

∣∣∣∣∣∣ 2N
∑
i∈Il

∑
l ̸=k

(√
1− c2kj + ∥εi∥

√
1− c2kj + ⟨µk, εi⟩

)p∣∣∣∣∣∣ ≤ KCαp ,

|Γ2| =

∣∣∣∣∣∣ 1N
∑
i∈Ik

∑
l ̸=k

∑
j∈Nl

∥wj∥2σ2p

(〈
xi,

wj

∥wj∥

〉)∣∣∣∣∣∣
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≤

∣∣∣∣∣∣ 2N
∑
i∈Ik

∑
l ̸=k

(〈
xi,

wj

∥wj∥

〉)2p
∣∣∣∣∣∣ ≤ KCα2p .

Therefore,

d

dt
∥wj∥2 ≥ 2

1−
∑
j∈Nk

∥wj∥2 − C log
K

δ
α2

 ∥wj∥2 ,

since when α is sufficiently small, the dominant term is of order α2.

Similarly, for the upper bound, we can have

d

dt
∥wj∥2

= 2 ((a) + Γ1) ∥wj∥2

≤ 2

cpkj −
∑
j∈Nk

∥wj∥2c2pkj + C

√
log

K

δ

α√
N

+ C2 log
K

δ
α2 + o(α2) + |Γ1|+ |Γ2|

 ∥wj∥2

≤ 2

1−
∑
j∈Nk

∥wj∥2
(
1− Cα2

2

)2p

− C

√
log

K

δ

α√
N

+ C2 log
K

δ
α2 + o(α2) + |Γ1|+ |Γ2|

 ∥wj∥2

≤ 2

1−
∑
j∈Nk

∥wj∥2 + 4p
Cα2

2
+ C

√
log

K

δ

α√
N

+ C2 log
K

δ
α2 + o(α2) + |Γ1|+ |Γ2|

 ∥wj∥2

≤ 2

1−
∑
j∈Nk

∥wj∥2 + C log
K

δ
α2

 ∥wj∥2

Lemma 14 (Restated). Consider the same assumptions as in Proposition 4. Given the t1 in Proposition 4, the following
holds ∀1 ≤ k ≤ K: ∑

j∈Nk

∥wj(t1)∥2 ≥ exp

(
− 2pp+2K

p(p− 2)∆̃2∆̃
p−2
1

)
W 2

minϵ
2 . (H.47)

Proof. The proof will be in two parts: first, we define, for each k,

t(k)aux := inf

{
t : min

j∈Nk

ckj(t) ≥
2

3

}
(By its definition)

≤ t1 , (H.48)

and show that ∑
j∈Nk

∥wj(t
(k)
aux)∥2 ≥ exp

(
− 2pp+2K

p(p− 2)∆̃2∆̃
p−2
1

) ∑
j∈Nk

∥wj(0)∥2 . (H.49)

Then we show that
∑

j∈Nk
∥wj(t1)∥2 is non-decreasing during [t

(k)
aux , t1].

Lower bound at t(k)aux: We shall focus on the case 1 ≤ k ≤ K1. In the proofs of Proposition 4, we have shown in (F.18) that
when t ≤ t

(k)
aux ≤ t̄1, the following is true: ∀j ∈ Nk

d

dt
ckj ≥ ∆̃2pc

p−1
kj , (H.50)

By Lemma 9, we have

t(k)aux = inf

{
t : ckj ≥

2

3

}
≤ 1

p(p− 2)∆̃2∆̃
p−2
1

. (H.51)
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Now we are ready to lower bound
∑

j∈Nk
∥wj(t

(k)
aux)∥2: In the same way we derived (H.27), we can also obtain: for t ≤ t1,

d

dt
∥wj∥2 ≥ −2p+1K(1 + 4ϵ

√
hW 2

max)∥wj∥2 ≥ −2p+2K∥wj∥2 , (H.52)

thus
d

dt

∑
j∈Nk

∥wj∥2 ≥ −2p+2K
∑
j∈Nk

∥wj∥2 . (H.53)

Finally, by Gr’́onwall’s inequality, we have∑
j∈Nk

∥wj(t
(k)
aux)∥2 ≥ exp

(
−2pp+2Kt(k)aux

) ∑
j∈Nk

∥wj(0)∥2

≥ exp

(
− 2pp+2K

p(p− 2)∆̃2∆̃
p−2
1

)
W 2

minϵ
2 .

Norm is non-decreasing afterward The techniques we will be using here is similar to those used in proving previous
lemma, so we describe the argument briefly.

Suppose 1 ≤ k ≤ K, we have the norm dynamics

d

dt
∥wj∥2

= − 2

N

 ∑
i:⟨xi,wj⟩>0

∇ŷℓi

(〈
xi,

wj

∥wj∥

〉)p
 ∥wj∥2

=
2

N

 ∑
i:⟨xi,wj⟩>0

yi

(〈
xi,

wj

∥wj∥

〉)p
 ∥wj∥2 + O(ϵ)︸︷︷︸

Recall how we handle Γ1 in the proof of Lemma 6

≥ 2

N

∑
i∈Ik

∣∣∣∣〈xi,
wj

∥wj∥

〉∣∣∣∣p −∑
l ̸=k

∑
i∈Il

∣∣∣∣〈xi,
wj

∥wj∥

〉∣∣∣∣p
 ∥wj∥2 +O(ϵ)

≥ 2

N

∑
i∈Ik

(
ckj +

〈
xi,

wj

∥wj∥

〉)p

︸ ︷︷ ︸
Taylor expansion, refer to (H.46)

−
∑
l ̸=k

∑
i∈Il

(
|clj |+

∣∣∣∣〈xi,
wj

∥wj∥

〉∣∣∣∣)p

︸ ︷︷ ︸
Taylor expansion, refer to (H.16)

 ∥wj∥2 +O(ϵ)

≥ 2

cpkj −
∑
l ̸=k

|clj |p −O

(√
log

K2N

δ
α

)
−O

(
α2
) ∥wj∥2 +O(ϵ) .

When ckj ≥ 2
3 , we have

cpkj −
∑
l ̸=k

|clj |p ≥ cpkj − (1− c2kj)
p
2 > 0 , (H.54)

then for sufficiently small α and ϵ, we have d
dt∥wj∥2 ≥ 0. Then during t

(k)
aux ≤ t ≤ t1, we have

d

dt

∑
j∈Nk

∥wj∥2 ≥ 0 . (H.55)

The proof is finished.

Lemma 18. 15[Restated] Given some 0 < ∆ < 1
4 , if for some z(t), the following holds

d

dt
z ≥ (1− z −∆)z, z(0) = z0, z(T ) = z1 , (H.56)

56



Gradient Flow Provably Learns Robust Classifiers for Orthonormal GMMs

for some 0 < z0 ≤ 1
4 , and z0 ≤ z1 < 1−∆. Then the travel time T for z(t) to go from z0 to z1 satisfies:

T ≤ 2

(
log

1

1− z1 −∆
+ log

1

z0

)
. (H.57)

Proof. We have ∫ z1

z0

1

(1− z −∆)z
dz ≥

∫ T

0

dt , (H.58)

thus

T ≤ 1

1−∆

(
log

1− z0 −∆

1− z1 −∆
+ log

z1
z0

)
≤ 2

(
log

1

1− z1 −∆
+ log

1

z0

)
. (H.59)

Lemma 16 (Restated). Condition on good event Egood, we have∑
j∈Nc

∥wj(t)∥2 = õ(α2) , ∀t ≤ T ∗ . (H.60)

Proof. We deal with neurons with sign(vj) = +1, the other case has a similar proof. If j ∈ Nc, it means wj0 is initialized
into the void region with ckj(0) < 0 and |ckj(t)| = Θ(1), for 1 ≤ k ≤ K1. Therefore, the inner product between
wj(0) and a data point xi from the k-th cluster is always negative, and this holds continuously as long as ckj(t) < 0 and
|ckj(t)| = Θ(1).

We will show that

1. Until t ≤ t∗, we still have ckj(t) < 0 and |ckj(t)| = Θ(1), thus none of the data in positive clusters activates wj .

2. Then ckj(t) < 0 and |ckj(t)| = Θ(1) suggests that,
∑

j∈Nc
∥wj∥2 has an at most O(α2) growth rate. And during

[t∗, T ∗], with a slightly different argument,
∑

j∈Nc
∥wj∥2 still has an at most O(α2) growth rate, thus continually stays

at õ(α2).

The a more formal proof requires proof by contradiction, with previous lemmas we have proved, but the provided argument
should easily be translated into a proof by contradiction.

First step: Given a j ∈ Nc ∪N+ and 1 ≤ k ≤ K1, we have during t ≤ t∗,

d

dt
ckj = −

1

N

∑
i:⟨xi,wj⟩>0

∇ŷℓi p

(〈
xi,

wj

∥wj∥

〉)p−1(
⟨µk,xi⟩ −

〈
xi,

wj

∥wj∥

〉
ckj

)

= − 1

N

∑
K1+1≤l≤K

∑
i∈Il:⟨xi,wj⟩>0

∇ŷℓi p

(〈
xi,

wj

∥wj∥

〉)p−1

⟨µk,xi⟩︸ ︷︷ ︸
=O( α√

D
)

−
〈
xi,

wj

∥wj∥

〉
ckj


= − 1

N

∑
K1+1≤l≤K

∑
i∈Il:⟨xi,wj⟩>0

∇ŷℓi p

(〈
xi,

wj

∥wj∥

〉)p

ckj︸︷︷︸
<0

+O
(

α√
D

)
.

Since ∇ŷℓi is either < 0 (during alignment phase) or = O(α2) (after norm growth). Then we always have d
dtckj = O(α

2).
Therefore, ∀t ≤ t∗

ckj(t) ≤ ckj(0) + t · O(α2) ≤ ckj(0) + t∗O(α2) = ckj(0) +O
(
α2 log

1

α

)
, (H.61)

thus, we still have ckj(t) < 0 and |ckj(t)| = Θ(1).
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Second step: During [0, t∗], since none of the data in positive clusters activates wj , we have

d

dt
∥wj∥2 = −2 1

N

 ∑
i:⟨xi,wj⟩>0

∇ŷℓi

(〈
xi,

wj

∥wj∥

〉)p
 ∥wj∥2

= −2 1

N

 ∑
K1+1≤l≤K

∑
i∈Il:⟨xi,wj⟩>0

∇ŷℓi

(〈
xi,

wj

∥wj∥

〉)p
 ∥wj∥2 .

Since ∇ŷℓi is either < 0 (during alignment phase) or = O(α2) (after norm growth). We have d
dt∥wj∥2 = O(α2) · ∥wj∥2.

During [t∗, T ∗], we have ∇ŷℓi = O(α2) for all i (as the consequence of
∣∣∣1−∑j∈Nk

∥wj∥2
∣∣∣ = O(α2) and Lemma 11).

Therefore we still have d
dt∥wj∥2 = O(α2) · ∥wj∥2.

Then we have ∀t ≤ T ∗,

d

dt

∑
j∈Nc

∥wj(t)∥2 ≤ O
(
exp(α2T ∗)

) ∑
j∈Nc

∥wj(0)∥2 ≤ O(1)
∑
j∈Nc

∥wj(0)∥2 ≤ O(ϵ2) = õ(α2) . (H.62)

Lemma 17 (Restated). If the neurons {wj}hj=1 satisfies the following for some 0 ≤ δ ≤ 1 and ν, ζ > 0:

• maxk maxj∈Nk
ckj(t) ≥ 1− δ;

•
∣∣∣1−∑j∈Nk

∥wj∥2
∣∣∣ ≤ ν;

•
∑

j∈N c ∥wj∥2 ≤ ζ,

then supx∈SD−1

∣∣f (p)(x;θ)− F (p)(x)
∣∣ ≤ K(1 + ν)(2p − 1)2δ +Kν + ζ

Proof.

f (p)(x;θ) (H.63)

=

h∑
j=1

vj
σp(⟨wj ,x⟩)
∥wj∥p−1

=

h∑
j=1

sign(vj)∥wj∥2
σp(⟨wj ,x⟩)
∥wj∥p

=

h∑
j=1

sign(vj)∥wj∥2σp

(〈
wj

∥wj∥
,x

〉)

=
∑

1≤k≤K1

∑
j∈Nk

∥wj∥2σp

(〈
wj

∥wj∥
,x

〉)
−

∑
K1+1≤k≤K

∑
j∈Nk

∥wj∥2σp

(〈
wj

∥wj∥
,x

〉)

+
∑
j∈N c

sign(vj)∥wj∥2σp

(〈
wj

∥wj∥
,x

〉)
. (H.64)

For the first term, we have ∀x ∈ SD−1∣∣∣∣∣∣
∑

1≤k≤K1

∑
j∈Nk

∥wj∥2σp

(〈
wj

∥wj∥
,x

〉)
−

∑
1≤k≤K1

σp(⟨µk,x⟩)

∣∣∣∣∣∣
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≤
∑

1≤k≤K1

∣∣∣∣∣∣
∑
j∈Nk

∥wj∥2σp

(〈
wj

∥wj∥
− µk + µk,x

〉)
− σp(⟨µk,x⟩)

∣∣∣∣∣∣
≤

∑
1≤k≤K1

∣∣∣∣∣∣
∑
j∈Nk

∥wj∥2σp

(
⟨µk,x⟩+

∥∥∥∥ wj

∥wj∥
− µk

∥∥∥∥)− σp(⟨µk,x⟩)

∣∣∣∣∣∣
=

∑
1≤k≤K1

∣∣∣∣∣∣
∑
j∈Nk

∥wj∥2σp (⟨µk,x⟩+ 2(1− ckj))− σp(⟨µk,x⟩)

∣∣∣∣∣∣
≤

∑
1≤k≤K1

∣∣∣∣∣∣
∑
j∈Nk

∥wj∥2σp (⟨µk,x⟩+ 2(1− ckj))−
∑
j∈Nk

∥wj∥2σp(⟨µk,x⟩)

∣∣∣∣∣∣
+

∑
1≤k≤K1

∣∣∣∣∣∣
∑
j∈Nk

∥wj∥2σp(⟨µk,x⟩)− σp(⟨µk,x⟩)

∣∣∣∣∣∣
≤

∑
1≤k≤K1

(1 + ν) |σp (⟨µk,x⟩+ 2(1− ckj))− σp(⟨µk,x⟩)|+
∑

1≤k≤K1

ν |σp(⟨µk,x⟩)|

≤
∑

1≤k≤K1

(1 + ν) |σp (⟨µk,x⟩+ 2(1− ckj))− σp(⟨µk,x⟩)|+K1ν

≤ K1(1 + ν)(2p − 1)2δ +K1ν ,

where the last inequality is due to the following derivation (notice that ReLU σ(z) is non-decreasing in z, and polynomial
zp is non-decreasing for z > 0)

|σp (⟨µk,x⟩+ 2(1− ckj))− σp(⟨µk,x⟩)|
=σp (⟨µk,x⟩+ 2(1− ckj))− (⟨µk,x⟩)
≤ (1 + 2δ)

p − 1 ≤ (2p − 1)2δ .

Similarly, for the second term, we have ∀x ∈ SD−1∣∣∣∣∣∣
∑

K1+1≤k≤K

∑
j∈Nk

∥wj∥2σp

(〈
wj

∥wj∥
,x

〉)
−

∑
K1+1≤k≤K

σp(⟨µk,x⟩)

∣∣∣∣∣∣ ≤ K2(1 + ν)(2p − 1)2δ +K2ν .

Lastly, for the third term, we have∣∣∣∣∣∣
∑
j∈N c

sign(vj)∥wj∥2σp

(〈
wj

∥wj∥
,x

〉)∣∣∣∣∣∣ ≤
∑
j∈N c

∥wj∥2 ≤ ζ .

Therefore, for any x ∈ SD−1, we have

∣∣∣f (p)(x;θ)− F (p)(x)
∣∣∣ ≤
∣∣∣∣∣∣
∑

1≤k≤K1

∑
j∈Nk

∥wj∥2σp

(〈
wj

∥wj∥
,x

〉)
−

∑
1≤k≤K1

σp(⟨µk,x⟩)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

K1+1≤k≤K

∑
j∈Nk

∥wj∥2σp

(〈
wj

∥wj∥
,x

〉)
−

∑
K1+1≤k≤K

σp(⟨µk,x⟩)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑
j∈N c

sign(vj)∥wj∥2σp

(〈
wj

∥wj∥
,x

〉)∣∣∣∣∣∣
≤K(1 + ν)(2p − 1)2δ +Kν + ζ .
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