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Abstract

Network coherence generally refers to the emergence of simple aggregated dynamical behaviours, despite heterogeneity in the
dynamics of the subsystems that constitute the network. In this paper, we develop a general frequency domain framework to
analyze and quantify the level of network coherence that a system exhibits by relating coherence with a low-rank property
of the system’s input-output response. More precisely, for a networked system with linear dynamics and coupling, we show
that, as the network’s effective algebraic connectivity grows, the system transfer matrix converges to a rank-one transfer
matrix representing the coherent behavior. Interestingly, the non-zero eigenvalue of such a rank-one matrix is given by the
harmonic mean of individual nodal dynamics, and we refer to it as the coherent dynamics. Our analysis unveils the frequency-
dependent nature of coherence and a non-trivial interplay between dynamics and network topology. We further show that many
networked systems can exhibit similar coherent behavior by establishing a concentration result in a setting with randomly
chosen individual nodal dynamics.
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1 Introduction

The study of coordinated behavior in network systems
has been a popular subject of research in many fields,
including physics [2], chemistry [3], social sciences [4],
and biology [5]. Within engineering, coordination is es-
sential for the proper operation of many networked sys-
tems, including power networks [6, 7], data and sensor
networks [8,9], and autonomous transportation [10–13].
Among many forms of coordination, coherence refers to
the ability of a group of nodes to have a similar dynamic
response to some external disturbance [14]. While co-
herence analysis is useful in understanding the collective
behavior of large networks, little do we know about the
underlying mechanism that causes such coherent behav-
ior to emerge in various networks.

Classic slow coherency analyses [15–19] (with applica-
tions mostly to power networks) usually consider the

⋆ Preliminary version of this work, covering an alternative
version of the results in Section 5, was presented in [1].
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second-order electro-mechanical model without damp-
ing: ẍ = −M−1Lx, where M is the diagonal matrix of
machine inertias, and L is the Laplacian matrix whose
elements are synchronizing coefficients between pair of
machines. The coherency or synchrony [16] (a general-
ized notion of coherency) is identified by studying the
first few slowest eigenmodes (eigenvectors with small
eigenvalues) of M−1L. The analysis can be carried over
to the case of uniform [15] and non-uniform [17] damp-
ing. However, such state-space-based analysis is limited
to very specific node dynamics (second order) and does
not account for more complex dynamics or controllers
that are usually present at a node level; e.g., in the power
systems literature [20–22]. Moreover, it is widely known
that such coherence is related to strong interconnection
among the nodes, such relation is not formally justified
in the aforementioned slow coherency analyses.

A vast body of work, triggered by the seminal paper [13],
has quantitatively studied the role of the network topol-
ogy in the emergence of coherence. Examples include,
directed [23] and undirected [24] consensus networks,
transportation networks [13], and power networks [7,25–
27]. The key technical approach amounts to quantify the
level of coherence by computing theH2-norm of the sys-
tem for appropriately defined nodal disturbance and per-
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formance signals. Broadly speaking, the analysis shows
a reciprocal dependence between the performance met-
rics and the non-zero eigenvalues of the network graph
Laplacian, validating the fact that strong network co-
herence (low H2-norm) results from the high connec-
tivity of the network (large Laplacian eigenvalues). Un-
fortunately, the analysis strongly relies on a homogene-
ity [13, 23–27] or proportionality [7] assumption of the
nodal transfer functions, and thus fails to characterize
how individual heterogeneous node dynamics affect the
overall coherent network response.

1.1 Our contribution

In this paper, we seek to overcome these limitations by
formalizing network coherence through a low-rank struc-
ture of the system transfer matrix that appears when the
network feedback gain is high. This frequency domain
analysis provides a deeper characterization of the role
of both, network topology and node dynamics, on the
coherent behavior of the network. In particular, our re-
sults make substantial contributions towards the under-
standing of coordinated and coherent behavior of net-
work systems in many ways:

• We present a general framework in the frequency do-
main to analyze the coherence of heterogeneous net-
works. We show that network coherence emerges as
a low-rank structure of the system transfer matrix
as we increase the effective algebraic connectivity–a
frequency-varying quantity that depends on the net-
work coupling strength and dynamics.

• Our analysis applies to networks with heterogeneous
nodal dynamics, and further provides an explicit char-
acterization in the frequency domain of the coherent
response to disturbances as the harmonic mean of in-
dividual nodal dynamics. Thus, in this way, our results
highlight the contribution of individual nodal dynam-
ics to the network’s coherent behavior.

• We formally connect our frequency-domain results
with explicit time-domain L∞ bounds on the dif-
ference between individual nodal responses and the
coherent dynamic response to certain classes of in-
put signals, suggesting that network coherence is a
frequency-dependent phenomenon. That is, the abil-
ity of nodes to respond coherently depends on the
frequency composition of the input disturbance.

• By providing an exact characterization of the net-
work’s coherent dynamics, our analysis can be fur-
ther applied in settings where only distributional
information of the network composition is known.
More precisely, we show that the coherent dynamics
of tightly-connected networks with possibly random
nodal dynamics are well approximated by a deter-
ministic transfer function that only depends on the
statistical distribution of node dynamics.

Notably, the problem of characterizing coherent dy-
namic response is unique to heterogeneous networks

since the coherent dynamics for homogeneous networks
are exactly equal to the common nodal dynamics. In
real applications, however, such as power networks,
such characterization is relevant to model reduction [28]
and control design [21]. Our analysis provides, in the
asymptotic sense, the exact characterization of coher-
ent dynamics that can be used in control design for
heterogeneous networks.

1.2 Other related work

Consensus and synchronization: Consensus [4, 11–
13,23,29,30] refers to the ability of the network nodes to
asymptotically reach a common value over some quan-
tities of interest. Synchronization [5, 8–10, 31–33] refers
to the ability of network nodes to follow a commonly
defined trajectory. Although for nonlinear systems syn-
chronization is a structurally stable phenomenon, in the
linear case [10,31–33], synchronization requires the exis-
tence of a common internal model that acts as a virtual
leader [32, 33]. As such, consensus and synchronization
are coordinated behavior generally achieved in steady
state, and requires a common internal model for every
node. On the contrary, the network can exhibit coherent
behavior during transient phase (a formal comparison
is presented in Section 4.3), and coherence exists even
without a common internal model.

Area aggregation and dynamic equivalents: For a
group of nodes that exhibit coherent behavior, one can
construct dynamic equivalents [15,16] that characterize
the slow coherence. Finding the dynamic equivalent, or
an aggregate model, for interconnected power generators
is long standing research subject in power system liter-
ature. Previously proposed aggregation model [7,17,28,
34, 35], mostly assume first- or second-order generator
dynamics, which does not account for more complex dy-
namics or controllers [20–22]. Our explicit characteriza-
tion of coherent dynamics provides a principled way to
obtain an aggregate model for general node dynamics.

1.3 Paper organization

The paper is organized as follows. In Section 3 we discuss
the network coherence as a low-rank property of the net-
work transfer matrix. In Section 4, we discuss the time-
domain implication of such coherence in transfer matrix.
In Section 5, the dynamics concentration in large-scale
networks is discussed. In Section 6, we apply our analysis
to synchronous generator networks. Lastly we conclude
with a discussion on future research in Section 7.

Notation: For a vector x, ∥x∥ =
√
x⊤x denotes the 2-

norm of x, and for a matrix A, σmin(A) denotes the
minimum singular value of A, ∥A∥ denotes the spectral
norm of A. Particularly, if A is real symmetric, we let
λi(A) denote the ith smallest eigenvalue of A. We let
diag{xi}ni=1 denote a n×n diagonal matrix with diagonal
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entries xi. We let In denote the identity matrix of order
n, 1 denote column vector [1, · · · , 1]⊤, [n] denote the set
{1, 2, · · · , n} and N+ denote the set of positive integers.
Also, we write complex numbers as a + jb, where j =√
−1. We denote C the field of complex number, and

define the following subsets B(s0, δ) := {s ∈ C : |s −
s0| ≤ δ}.

2 Problem Setup

Consider a network consisting of n nodes (n ≥ 2), in-
dexed by i ∈ [n] with the block diagram structure in
Fig.1. L is the Laplacian matrix of the weighted graph
that describes the network interconnection. We further
use f(s) to denote the transfer function representing the
dynamics of network coupling, and G(s) = diag{gi(s)}
to denote the nodal dynamics, with gi(s), i ∈ [n], be-
ing an SISO transfer function representing the dynam-
ics of node i. Throughout this paper, we assume all
gi(s), i = 1, · · · , n and f(s) are rational proper transfer
functions, and the Laplacian matrixL is real symmetric.

G(s)

f(s)L

u y

−

Fig. 1. Block diagram of networked dynamical systems

Under this setting, we can compactly express the trans-
fer matrix from the input signal vector u to the output
signal vector y by

T (s) = (In +G(s)f(s)L)−1G(s)

= (In + diag{gi(s)}f(s)L)−1diag{gi(s)} . (1)

Many existing networks can be represented by this
structure. For example, for the first-order consensus
network [11, 29], f(s) = 1, and the node dynamics are
given by gi(s) =

1
s . For power networks [7,26], f(s) =

1
s ,

gi(s) are the dynamics of the generators, and L is the
Laplacian matrix representing the sensitivity of power
injection w.r.t. bus phase angles. Finally, in trans-
portation networks [11, 12], gi(s) represent the vehicle
dynamics whereas f(s)L describes local inter-vehicle
information transfer.

Since L has an eigendecomposition L = V ΛV ⊤

where V =
[

1√
n
, V⊥

]
, V V ⊤ = V ⊤V = In, and Λ =

diag{λi(L)} with 0 = λ1(L) ≤ λ2(L) ≤ · · · ≤ λn(L), we
can rewrite T (s) as

T (s) = (In + diag{gi(s)}f(s)L)−1diag{gi(s)}
= (diag{g−1

i (s)}+ f(s)L)−1

= (diag{g−1
i (s)}+ f(s)V ΛV ⊤)−1

= V (V ⊤diag{g−1
i (s)}V + f(s)Λ)−1V ⊤ . (2)

As we mentioned in the introduction, we are interested
in the regime where the closed-loop system T (s) of (1)
has a low-rank structure. To gain some insight, we first
consider the following simplified example.

2.1 Motivating example: homogeneous network

Suppose gi(s) are homogeneous, i.e., gi(s) = g(s). Then
using (2) one can decompose T (s) as follows

T (s)=
1

n
g(s)11⊤+V⊥diag

{
1

g−1(s)+f(s)λi(L)

}n

i=2

V ⊤
⊥ ,

(3)
where the network dynamics decouple into two terms:
1) the dynamics 1

ng(s)11⊤ that is independent of net-
work topology and corresponds to the coherent behav-
ior of the system; 2) the remaining dynamics that are
dependent on the network structure via both, the eigen-
values λi(L), i = 2, · · · , n and the eigenvectors V⊥. No-
tice that |f(s)λ2(L)| ≤ |f(s)λi(L)|, i = 2, . . . , n, then
1
ng(s)11⊤ is dominant in T (s) as long as |f(s)λ2(L)|
(later referred as effective algbraic connectivity), is large
enough to make the norm of the second term in (3) suf-
ficiently small. Following such observation, we can find
two regimes where the coherent dynamics 1

ng(s)11⊤ is
dominant:

(1) (High network connectivity) If a compact set S ⊂ C
contains neither zeros nor poles of g(s), then we
have limλ2(L)→∞ sups∈S

∥∥T (s)− 1
ng(s)11⊤

∥∥ = 0 .
(2) (High gain in coupling dynamics) If s0 is a pole of

f(s), and the network is connected, i.e., λ2(L) > 0,
then we have lims→s0

∥∥T (s)− 1
ng(s)11⊤

∥∥ = 0 .

Such convergence results suggest that if 1) the network
has high algebraic connectivity, or 2) our point of interest
in frequency domain is close to pole of f(s), the response
of the entire system is close to one of 1

ng(s)11⊤. We re-

fer 1
ng(s)11⊤ as the coherent dynamics 1 in the sense

that in such system, the inputs are aggregated, and all
nodes have exactly the same response to the aggregate
input. Therefore, coherence of the network corresponds,
in the frequency domain, to the property that the net-
work’s transfer matrix approximately having a particular
rank-one structure.

The aforementioned analysis can be extended to the case
with proportionality assumption, i.e., gi(s) = pig(s) for
some g(s) and pi > 0, i = 1, · · · , n, where one can still
obtain decoupled dynamics through proper coordinate

1 We also refer g(s) as the coherent dynamics since transfer
matrix of the form 1

n
g(s)11⊤ is uniquely determined by its

non-zero eigenvalue g(s).
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transformation [7] and the coherent dynamics are again
characterized by the common dynamics g(s). However, it
is challenging to analyze the transfer matrix T (s) with-
out the proportionality assumption: First, it is unclear
whether low-rank structure would even emerge under
high network connectivity or high gain in the coupling
dynamics; Then most importantly, there is no obvious
choice for coherent dynamics, hence characterizing the
coherent dynamics is a non-trivial problem unique to
heterogeneous networks, and no existing work has shown
an explicit characterization.

2.2 Goal of this work

Our work precisely aims at understanding the coher-
ent dynamics of non-proportional heterogeneous net-
works. We would like to show that even when gi(s) are
heterogeneous, similar results as in the motivating ex-
ample still hold. More precisely, we show that, in Sec-
tion 3, T (s) converges to a rank-one transfer matrix of
the form 1

n ḡ(s)11⊤, as the effective algebraic connectiv-
ity |f(s)λ2(L)| increases. However, unlike the homoge-
neous node dynamics case where the coherent behavior
is driven by ḡ(s) = g(s), the coherent dynamics ḡ(s) are
given by the harmonic mean of gi(s), i = 1, · · · , n, i.e.,

ḡ(s) =

(
1

n

n∑
i=1

g−1
i (s)

)−1

. (4)

The convergence results are presented in the aforemen-
tioned two regimes: high network connectivity and high
gain in coupling dynamics. We then discuss in Section 4
their implications on network’s time-domain response:

(1) Network with high connectivity responds coher-
ently to a wide class of input signals;

(2) Network with coupling dynamics f(s) = 1
s is nat-

urally coherent with respect to sufficiently low-
frequency signals, regardless of its connectivity.

One additional feature of our analysis is that it can be
further applied in settings where the composition of the
network is unknown and only distributional informa-
tion is present. More precisely, we, in Section 5, consider
a network where node dynamics are given by random
transfer functions. As the network size grows, the co-
herent dynamics ḡ(s), the harmonic mean of all node
dynamics, converges in probability to a deterministic
transfer function. We term such a phenomenon, where a
family of uncertain large-scale systems concentrates to a
common deterministic system, dynamics concentration.

Lastly, we verify our theoretical results in Section 6 by
several numerical experiments on linearized power net-
work model, and discuss a general aggregation model for
a group of coherent generators.

3 Coherence in Frequency Domain

In this section, we analyze the network coherence as
the low-rank structure of the transfer matrix in the fre-
quency domain. We start with an important lemma re-
vealing how such coherence is related to the algebraic
connectivity λ2(L) and the coupling dynamics f(s).

Lemma 1 Let T (s) and ḡ(s) be defined as in (1) and
(4), respectively. Suppose that for s0 ∈ C that is not a
pole of f(s), we have

|ḡ(s0)| ≤ M1, and max
1≤i≤n

|g−1
i (s0)| ≤ M2 ,

for some M1,M2 > 0. Then the following inequality
holds:∥∥∥∥T (s0)− 1

n
ḡ(s0)11⊤

∥∥∥∥ ≤ (M1M2 + 1)
2

|f(s0)|λ2(L)−M2 −M1M2
2

,

(5)
whenever |f(s0)|λ2(L) ≥ M2 +M1M

2
2 .

We refer readers to Appendix A for the proof. Lemma
4 provides a non-asymptotic rate for our incoherence
measure∥∥∥∥T (s0)− 1

n
ḡ(s0)11⊤

∥∥∥∥ ∼ O
(

M2
1M

2
2

|f(s0)|λ2(L)

)
. (6)

A large value of |f(s0)|λ2(L) is sufficient to have the
incoherence measure small, and we term this quantity
as effective algebraic connectivity. We see that there are
two possible ways to achieve such point-wise coherence:
Either we increase the network algebraic connectivity
λ2(L), by adding edges to the network and increasing
edge weights, etc., or we move our point of interest s0
to a pole of f(s). This point-wise coherence via effective
connectivity provides the basis of our subsequent anal-
ysis. As we mentioned above, we can achieve such co-
herence by increasing either λ2(L) or |f(s0)|, provided
that the other value is fixed and non-zero. Section 3.1
considers the former and Section 3.2 the latter.

3.1 Coherence under high network connectivity

It is intuitive that a network behaves coherently under
high connectivity. A formal frequency domain charac-
terization is stated as follow.

Theorem 2 Let T (s) and ḡ(s) be defined as in (1) and
(4), respectively. Given a compact set S ⊂ C, if

(1) S does not contain any zero or pole of ḡ(s);
(2) infs∈S |f(s)| > 0 ,

we have limλ2(L)→+∞ sups∈S

∥∥T (s)− 1
n ḡ(s)11⊤

∥∥ = 0 .
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PROOF. On the one hand, since S does not contain
any pole of ḡ(s), ḡ(s) is continuous on the compact set
S, and hence bounded [36, Theorem 4.15]. On the other
hand, because S does not contain any zero of ḡ(s), every
g−1
i (s) must be continuous on S, and hence bounded as

well. It follows that max1≤i≤n |g−1
i (s)| is bounded on S,

and the conditions of Lemma 1 are satisfied for all s ∈ S
with a uniform choice of M1 and M2. By (5), we have

sup
s∈S

∥∥∥∥T (s)− 1

n
ḡ(s)11⊤

∥∥∥∥ ≤ (M1M2 + 1)
2

Flλ2(L)−M2 −M1M2
2

,

where Fl = infs∈S |f(s)|. We finish the proof by taking
λ2(L) → +∞ on both sides.

Theorem 2 formally shows that high network connectiv-
ity leads to coherence. We emphasize that such coher-
ence is frequency-dependent: the incoherence measure is
defined over a compact set S. Roughly speaking, if we
would like to see whether the network could have coher-
ent response under certain input signal, then S should
cover most of the frequency components of that signal,
as well satisfies the assumptions in Theorem 2. We dis-
cuss the proper choice of S when we use Theorem 2 to
infer the time-domain response in Section 4.1.

3.2 Coherence under high gain in coupling dynamics

However, high network connectivity is not necessary for
coherence. A high gain in the coupling dynamics effec-
tively amplifies the network connection, leading to the
following frequency-domain coherence.

Theorem 3 Let T (s) and ḡ(s) be defined as in (1) and
(4), respectively. Given a pole of f(s), if

(1) s0 is neither a pole nor a zero of ḡ(s);
(2) λ2(L) > 0,

then lims→s0

∥∥T (s)− 1
n ḡ(s)11⊤

∥∥ = 0 .

PROOF. Since s0 is neither a zero nor a pole of ḡ(s),
∃δ1 > 0 such that ∀s ∈ B(s0, δ1), we have |ḡ−1(s)| ≤ M1

and max1≤i≤n |g−1
i (s)| ≤ M2 for some M1,M2 > 0.

Now notice that lims→s0 |f(s)| = +∞, by the defini-
tion of the limit, we know that ∃δ2 > 0 such that ∀s ∈
B(s0, δ2), we have 1

2 |f(s)|λ2(L) ≥ M2 + M1M
2
2 . By

Lemma 1, let δ := min{δ1, δ2}, then ∀s ∈ B(s0, δ), the
following holds∥∥∥∥T (s)− 1

n
ḡ(s)11⊤

∥∥∥∥ ≤ (M1M2 + 1)
2

|f(s)|λ2(L)−M2 −M1M2
2

≤ 2 (M1M2 + 1)
2

|f(s)|λ2(L)
.

Taking s → s0, the limit of right-hand side is 0.

Theorem 3 suggests that for any connected network,
some coupling dynamics causes coherent responses from
the network under specific input signals. For example,
when f(s) = 1

s , the network T (s) is naturally coher-
ent around s = 0, which implies that such network be-
haves coherently under sufficiently low-frequency input
signals. This is formally justified in Section 4.2, along
with time-domain results for other choice of coupling
dynamics.

Remark 4 The convergence results presented in this
section exclude the region that contains any zero or pole
of ḡ(s). One can derive convergence results over those
regions under certain conditions, but the results is less
useful in understanding the network’s time-domain be-
havior. We refer readers to the technical note [37] for
details.

4 Implications on Time-Domain Response

In this section, we discuss how one can infer the
network’s time-domain response using the estab-
lished frequency-domain coherence in Theorem 2
and 3. Provided that the network T (s) and the
coherent dynamics ḡ(s) are BIBO stable, we let
y(t) = [y1(t), · · · , yi(t), · · · , yn(t)]⊤ be the response of
the network when the network input is U(s), and let ȳ(t)

be the response of ḡ(s) to 1⊤

n U(s). The inverse Laplace
transform [38] suggests that for all i = 1, · · · , n, we have

|yi(t)− ȳ(t)| =∣∣∣∣ limω→∞

∫ σ+jω

σ−jω

este⊤i

(
T (s)− 1

n
ḡ(s)11⊤

)
U(s)ds

∣∣∣∣ ,
(7)

with a proper choice of σ > 0. Here ei is the i-th column
of identity matrix In. This integral can be decomposed
in two parts: one integral on the low-frequency band (σ−
jω0, σ + jω0); and another on the high-frequency band
(σ−j∞, σ−jω0)∪(σ+jω0, σ+j∞), with some choice of
ω0. The former can be made small in absolute value by
controlling the incoherence measure ∥T (s)− 1

n ḡ(s)11⊤∥
over the set S : (σ − jω0, σ + jω0). In particular,

(1) sups∈S ∥T (s)− 1
n ḡ(s)11⊤∥ can be small under high

network connectivity, as suggested by Theorem 2;
(2) sups∈S ∥T (s)− 1

n ḡ(s)11⊤∥ can be small when S is
confined in a neighborhood around pole of coupling
dynamics f(s), suggested by Theorem 3. The case
f(s) = 1

s is of the most interest.

5



Moreover, when U(s) is a sufficiently low-frequency sig-
nal such that the high-frequency band (σ − j∞, σ −
jω0) ∪ (σ + jω0, σ + j∞) does not include much of its
frequency components, the latter integral can be made
small. Given an upper bound on the integral in (7), we
show that the time-domain response of every node in the
network resembles the one from the coherent dynamics
ḡ(s). Similar to Section 3, we show such time-domain
coherence in two regimes: high network connectivity or
high gain in the coupling dynamics.

Remark 5 In order to infer the time-domain response,
it is necessary that both the transfer functions T (s) and
1
n ḡ(s)11⊤ are stable. Since our primary focus is on the
interpretation of the frequency domain results, we are
largely working under the tacit assumption that these
transfer functions are stable whenever required. It should
also be noted that there exist a range of scalable stabil-
ity criteria in the literature that can be used to guarantee
internal stability of the feedback setup in Figure 1. Per-
haps the most well known is that if each gi(s) is strictly
positive real, and f(s) is positive real, then the transfer
functions ḡ(s) and[

G(s)

I

]
(I + f(s)LG(s))

−1
[
f(s)L I

]
are stable (see e.g. [39]). Alternative approaches that can
be easily adapted to our framework that give criteria that
allow for different classes of transfer functions include
[40–42].

4.1 Coherent response under high network connectivity

Our first result considers network with high connectivity.

Theorem 6 Given a network with node dynamics
{gi(s)}ni=1 and coupling dynamics f(s), assume that
there exists γ > 0, such that ∥ḡ(s)∥H∞ ≤ γ and
∥T (s)∥H∞ ≤ γ for any symmetric Laplacian matrix L.
Consider a network coupling f(s) and a real input signal
vector u(t) with its Laplace transform U(s) such that for
some σ > 0, we have

(1) infω∈R |f(σ + iω)| > 0;
(2) supRe(s)>σ ∥U(s)∥ is finite;

(3) limω→∞
∫ σ+jω

σ+j0
∥U(s)∥ds is finite .

Then for any ϵ > 0, there exists a λ > 0, such that
whenever λ2(L) ≥ λ, we have ∥y(t)− ȳ(t)1∥L∞ ≤ ϵ, i.e.,

max
i∈[n]

sup
t>0

|yi(t)− ȳ(t)| ≤ ϵ .

We refer readers to Appendix B for the proof. Theo-
rem 6 provide a formal explanation of coherent behav-
ior observed in practical networks and show its relation

with network connectivity. That is, a stable network with
high connectivity can respond coherently to a class of in-
put signals. More importantly, the coherently response
is well approximated by ḡ(s), then it suffices to study
ḡ(s) for understanding the coherent behavior of a net-
work with high connectivity.

While the theorem suggests that some level of coherence
can be achieved by increasing the network connectivity,
one should be cautious about the potential network in-
stability caused by strong interconnection. Nonetheless,
some simple passivity motivated criteria that ensure sta-
bility even as λ2(L) becomes arbitrarily large:

Theorem 7 Suppose that all gi(s), i = 1, · · · , n are out-
put strictly passive: Re(gi(s)) ≥ ϵ|gi(s)|2,∀Re(s) > 0 ,
for some ϵ > 0, and f(s) is positive real: Re(f(s)) ≥
0,∀Re(s) > 0 , then there exists γ > 0, such that given
any positive semidefinite matrix L, we have

∥ḡ(s)∥H∞ ≤ γ, and ∥T (s)∥H∞ ≤ γ .

We refer readers to Appendix C for the proof. Theorem 7,
together with Theorem 6, shows that for certain passive
networks, the coherence can be achieved over a class of
input signals by increasing the network connectivity.

Remark 8 Besides network stability as a prerequisite,
a few assumptions are made: infimum on |f(s)| ensures
that the network coupling does not vanish over our do-
main of interest; supremum on ∥U(s)∥ is needed for uti-
lizing inverse Laplace transform; and the last assump-
tion requires U(s) to have light tail on the high-frequency
range, a low-frequency signal with no abrupt change at
t = 0, such as sinusoidal signalU(s) = α

s2+α2u0, or expo-

nential approach signal U(s) = α
s(s+α)u0 of some shape

u0 ∈ Rn, satisfies the assumption.

4.2 Coherent response under special coupling dynamics

As we discussed in Section 3, coherence is not all about
network connectivity, and high gain in the coupling dy-
namics causes coherence as well. One simple and prac-
tically seen coupling dynamics are f(s) = 1

s . Due to its
high gain at s = 0, we expected the a coherent response
under low-frequency signals, as formally shown below.

Theorem 9 Given a network with node dynamics
{gi(s)}ni=1, coupling dynamics f(s) = 1

s , and a fixed
graph Laplacian L with λ2(L) > 0, such that ∥ḡ(s)∥H∞
and ∥T (s)∥H∞ are finite, we let the network input be a
sinusoidal signal uα(t) = sin(αt)χ(t)u0 in an arbitrary
direction u0 ∈ Sn−1. Then for any ϵ > 0, there exists
an α0 > 0 such that whenever 0 ≤ α ≤ α0, we have
∥y(t)− ȳ(t)1∥L∞ ≤ ϵ, i.e.,

max
i∈[n]

sup
t>0

|yi(t)− ȳ(t)| ≤ ϵ . (8)
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We refer readers to Appendix B for the proof. Theorem
9 shows that a stable network with f(s) = 1

s is naturally
coherent subject to sufficiently low-frequency signals, re-
gardless of its connectivity. Notably, the requirement on
the node dynamics here is much weaker than one in The-
orem 6 as we only need to establish stability for a given
interconnection L, whereas Theorem 6 requires stability
under any interconnection.

4.3 Comparison with different notions of coordination

Our Theorem 6 and 9 shows the coherent response of
network in time domain.We compare our results to prior
work that studies different forms of time-domain coor-
dination in network systems.

The consensus [29] and synchronization [5, 8, 10] is ar-
guably the simplest form of coordination in network sys-
tems, which can be viewed as a problem tracking some
reference signal ȳ(t) representing the final consensus or
synchronization. However, one only requires yi(t) → ȳ(t)
when t → ∞, i.e., that the node responses become close
to ȳ(t) in steady state. The coherent response considered
here is different in that we have yi(t) ≃ ȳ(t),∀t > 0, i.e.,
ȳ(t) is a good approximation for yi(t) for all time t > 0,
hence our results can be also used for transient analysis.

The work on coherency and synchrony [16,43–45] study
a similar behavior as us, but characterized as pairwise
coherence achieved under input signal of certain spatial
shape: given a input signal vector u(t) = v(t)u0, [43,44]
shows the condition on u0 such that the responses of
some pair of nodes are similar (or generally, propor-
tional [16]), i.e., yi(t) ≃ yj(t) for some i, j ∈ [n] . Our re-
sults show that certain temporal shape v(t) also causes
coherence, and in a stronger form: our coherence does
not depends on the shape u0, and holds for all nodes.

5 Dynamics Concentration in Large-scale Net-
works

In Section 3, we looked into convergence results of T (s)
for networks with fixed size n. However, one could easily
see that such coherence depends mildly on the network
size n: In Lemma 1, as long as the bounds regarding
gi(s), i.e. M1 and M2 do not scale with respect to n,
coherence can emerge as the network size increases. This
is the topic of this section.

5.1 Coherence in large-scale networks

To start with, we revise the problem settings to account
for variable network size: Let {gi(s), i ∈ N+} be a se-
quence of transfer functions, and {Ln, n ∈ N+} be a se-
quence of real symmetric Laplacian matrices such that

Ln is a square matrix of order n, particularly, let L1 = 0.
Then we define a sequence of transfer matrix Tn(s) as

Tn(s) = (In +Gn(s)Ln)
−1

Gn(s) , (9)

where Gn(s) = diag{g1(s), · · · , gn(s)}. This is exactly
the same transfer matrix shown in Fig.1 for a network
of size n. We can then define the coherent dynamics for

every Tn(s) as ḡn(s) =
(
1
n

∑n
i=1 g

−1
i (s)

)−1
.

For certain family {Ln, n ∈ N+} of large-scale networks,
the network algebraic connectivity λ2(Ln) increases as
n grows. For example, when Ln is the Laplacian of a
complete graph of size n with all edge weights being
1, we have λ2(Ln) = n. As a result, network coher-
ence naturally emerges as the network size grows. Recall
that to prove the convergence of Tn(s) to

1
n ḡn(s)11⊤ for

fixed n, we essentially seek for M1,M2 > 0, such that
|ḡn(s)| ≤ M1 and max1≤i≤n |g−1

i (s)| ≤ M2 for s in a cer-
tain set. If it is possible to find a universalM1,M2 > 0 for
all n, then the convergence results should be extended to
arbitrarily large networks, provided that network con-
nectivity increases as n grows. The results follows after
we state the notion of uniform boundedness for a family
of functions.

Definition 10 Let {gi(s), i ∈ I} be a family of complex
functions indexed by I. Given S ⊂ C, {gi(s), i ∈ I} is
uniformly bounded on S if

∃M > 0 s.t. |gi(s)| ≤ M, ∀i ∈ I, ∀s ∈ S .

Theorem 11 Suppose λ2(Ln) → +∞ as n → ∞. Given
a compact set S ⊂ C, if both {g−1

i (s), i ∈ N+} and
{ḡn(s), n ∈ N+} are uniformly bounded on a set S ⊂ C,
and infs∈S |f(s)| > 0, then we have

lim
n→∞

sup
s∈S

∥∥∥∥Tn(s)−
1

n
ḡn(s)11⊤

∥∥∥∥ = 0 .

The proof is similar to the one for Theorem 2. Due to
the space constraints, we refer readers to the technical
note [37] for the proof. Interestingly, in a stochastic set-
ting where all gi(s) are unknown transfer functions in-
dependently drawn from some distribution, their har-
monic mean ḡn(s) eventually converges in probability
to a deterministic transfer function as the network size
increases. Consequently, a large-scale network consist-
ing of random node dynamics (to be formally defined
later) concentrates to deterministic a system. We term
this phenomenon dynamics concentration.

Remark 12 In this section, we only discuss the coher-
ence due to connectivity, since the coherence from high
gain in coupling dynamics shown in Theorem 3 can be
applied to any connected network, regardless of its size.
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5.2 Dynamics concentration in large-scale networks

Now we consider the cases where the node dynamics
are unknown (stochastic). For simplicity, we constraint
our analysis to the setting where the node dynamics are
independently sampled from the same random rational
transfer function with all or part of the coefficients are
random variables, i.e. the nodal transfer functions are of
the form

gi(s) ∼
bmsm + . . . b1s+ b0
alsl + . . . a1s+ a0

, (10)

for some m, l > 0, where b0, · · · , bm, a0, · · · , al are ran-
dom variables.

To formalize the setting, we firstly define the random
transfer function to be sampled. Let Ω = Rd be the sam-
ple space, F the Borel σ-field of Ω, and P a probability
measure on Ω. A sample w ∈ Ω thus represents a d-
dimensional vector of coefficients. We then define a ran-
dom rational transfer function g(s, w) on (Ω,F ,P) such
that all or part of the coefficients of g(s, w) are random
variables. Then for any w0 ∈ Ω, g(s, w0) is a rational
transfer function.

Now consider the probability space (Ω∞,F∞,P∞). Ev-
ery w ∈ Ω∞ give an instance of samples drawn from our
random transfer function:

gi(s, wi) := g(s, wi), i ∈ N+ ,

where wi is the i-th element of w. By construction,
gi(s, wi), i ∈ N+ are i.i.d. random transfer functions.
Moreover, for every s0 ∈ C, gi(s0, wi), i ∈ N+ are i.i.d.
random complex variables taking values in the extended
complex plane (presumably taking value ∞).

Now given {Ln, n ∈ N+} a sequence of n × n real sym-
metric Laplacian matrices, consider the random network
of size n whose nodes are associated with the dynamics
gi(s, wi), i = 1, 2, · · · , n and coupled through Ln. The
transfer matrix of such a network is given by

Tn(s,w) = (In +Gn(s,w)Ln)
−1Gn(s,w) , (11)

where Gn(s,w) = diag{g1(s, w1), · · · , gn(s, wn)}. Then
under this setting, the coherent dynamics of the network
is given by

ḡ(s,w) =

(
1

n

n∑
i=1

g−1
i (s, wi)

)−1

. (12)

Now given a compact set S ⊂ C of interest, and assuming
suitable conditions on the distribution of g(s, w), we ex-
pect that the random coherent dynamics ḡ(s,w) would

converge uniformly in probability to its expectation

ĝ(s) =
(
Eg−1(s, w))

)−1
:=

(∫
Ω

g−1(s, w)dP(w)

)−1

,

(13)
for all s ∈ S, as n → ∞. The following Lemma provides
a sufficient condition for this to hold.

Lemma 13 Consider the probability space (Ω∞,F∞,P∞).
Let ḡn(s,w) and ĝ(s) be defined as in (12) and (13),
respectively, and given a compact set S ⊂ C, let the
following conditions hold:

(1) g−1(s, w) is uniformly bounded on S × Ω;
(2) {ḡn(s,w), n ∈ N+} are uniformly bounded on S ×

Ω∞;
(3) ∃L > 0 s.t. |g−1

1 (s1, w) − g−1
1 (s2, w)| ≤ L|s1 − s2|,

∀w ∈ Ω,∀s1, s2 ∈ S;
(4) ĝ(s) is uniformly continuous.

Then, ∀ϵ > 0, we have

lim
n→∞

P

(
sup
s∈S

∥∥∥∥ 1nḡn(s,w)11⊤ − 1

n
ĝ(s)11⊤

∥∥∥∥ ≥ ϵ

)
= 0 .

This lemma suggests that our coherent dynamics
ḡn(s,w), as n increases, converges uniformly on S to its
expected version ĝ(s). Then provided that the coher-
ence is obtained as the network size grows, we would
expect that the random transfer matrix Tn(s,w) to
concentrate to a deterministic one 1

n ĝ(s)11⊤, as the
following theorem shows.

Theorem 14 Given probability space (Ω∞,F∞,P∞).
Let Tn(s,w) and ĝ(s) be defined as in (11) and (13),
respectively. Suppose λ2(Ln) → +∞ as n → +∞. Given
a compact set S ⊂ C, if all the conditions in Lemma 13
hold, then ∀ϵ > 0, we have

lim
n→∞

P

(
sup
s∈S

∥∥∥∥Tn(s,w)− 1

n
ĝ(s)11⊤

∥∥∥∥ ≥ ϵ

)
= 0 .

The proof of Lemma 13 follows the standard procedure
for showing the uniform stochastic convergence of a ran-
dom function, then Theorem 14 is its direct application.
We refer interested readers to the technical note [37] for
the proofs. In summary, because the coherent dynamics
is given by the harmonicmean of all node dynamics gi(s),
it concentrates to its harmonic expectation ĝ(s) as the
network size grows. As a result, in practice, the coherent
behavior of large-scale networks depends on the empiri-
cal distribution of gi(s), i.e. a collective effect of all node
dynamics rather than every individual node dynamics.
For example, two different realizations of large-scale net-
work with dynamics Tn(s,w) exhibit similar coherent
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behavior with high probability, in spite of the possible
substantial differences in individual node dynamics.

Remark 15 With Theorem 14, one can adopt the anal-
ysis in Section 4 to derive a time-domain result similar to
the one in Theorem 6. In this case, the network stability
again relies on node passivity as required in Theorem 7.
Nonetheless, for low-order rational transfer function, the
condition of being passive is equivalent to its coefficients
satisfying certain algebraic inequalities [46], hence there
exists probability measure P on the coefficients such that
the resulting transfer function is passive almost surely,
under which the time-domain response of the network
Tn(s,w) can be inferred.

6 Application: Aggregate Dynamics of Syn-
chronous Generator Networks

In this section, we apply our analysis to investigate
coherence in power networks. For coherent generator
groups, we find that 1

n ḡ(s) generalizes typical aggregate
generator models which are often used for model reduc-
tion in power networks [14]. Moreover, we show that
heterogeneity in generator dynamics usually leads to
high-order aggregate dynamics, making it challenging
to find a reasonably low-order approximation.

Consider the transfer matrix of power generator net-
works [7] linearized around its steady-state point, given
by the following block diagram: This is exactly the block

diag{gi(s)}

1
sL

u ω

−

Fig. 2. Block Diagram of Linearized Power Networks

structure shown in Fig. 1 with f(s) = 1
s . Here, the net-

work output, i.e., the frequency deviation of each gener-
ator, is denoted by ω. Generally, the gi(s) are modeled
as strictly positive real transfer functions and we assume
L is connected. Such interconnection is stable [39], re-
gardless of the network connectivity.

6.1 Numerical verification

We verify our theoretical results, Theorem 6 and Theo-
rem 9, with numerical simulations on the Icelandic power
grid [47] modeled as in Fig 2. We plot in Fig. 3 the fre-
quency response of the power network model subject to
various input disturbances. the network step response is
more coherent, i.e. response of every single node (gener-
ator) is getting closer to the one of the coherent dynam-
ics ḡ(s), when the network connectivity is scaled up, as

suggested by Theorem 6. In addition, the network re-
sponds more coherently when subject to lower-frequency
signals (See the second and forth column in Fig 3), as
suggested by Theorem 9. But most importantly, the co-
herent dynamics ḡ(s) provides a good characterization of
the coherent response.We also plot the Center-of-Inertia
frequency of the grid yCOI = (

∑n
i=1 miyi)/(

∑n
i=1 mi),

which is generally used for frequency response assess-
ment, and we see that it is well approximated by the
response of ḡ(s).

6.2 Aggregate dynamics of generator networks

The numerical simulations above suggest that the coher-
ent dynamics ḡ(s) characterize well the overall frequency
response of generators in a grid. This leads to a general
methodology to analyze the aggregate dynamics of such
networks. Let

gaggr(s) :=
1

n
ḡ(s) =

(
n∑

i=1

g−1
i (s)

)
.

Our analysis suggests that the transfer function T (s)
representing a network of generators is close gaggr(s)11⊤

within the low-frequency range, for sufficiently high net-
work connectivity λ2(L). We can also view gaggr(s) as
the aggregate generator dynamics, in the sense that it
takes the sum of disturbances 1⊤u =

∑n
i=1 ui as its in-

put, and its output represents the coherent response of
all generators.

Such a notion of aggregate dynamics is important in
modeling large-scale power networks [14]. Generally
speaking, one seeks to find an aggregate dynamic model
for a group of generators using the same structure (trans-
fer function) as individual generator dynamics, i.e. when
generator dynamics are modeled as gi(s) = g(s; θi),
where θi is a vector of parameters representing physical
properties of each generator, existing works [28,35] pro-
pose methods to find aggregate dynamics of the form
g(s; θaggr) for certain structures of g(s; θ). Our gaggr(s)
justifies their choices of θaggr, as shown in the following
example.

Example 16 For generators given by the swing model
gi(s) =

1
mis+di

,wheremi, di are the inertia and damping
of generator i, respectively. The aggregate dynamics are

gaggr(s) =
1

maggrs+ daggr
, (14)

where maggr =
∑n

i=1 mi and daggr =
∑n

i=1 di.

Here the parameters are θ = {m, d}. The aggregate
model given by (14) is consistent with the existing ap-
proach of choosing inertia m and damping d as the re-
spective sums over all the coherent generators.
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Fig. 3. Coherent response of Icelandic Grid. Each column corresponds to a different input signal (from left to right: step,
exponential approach, high-frequency sinusoidal, and low-frequency sinusoidal signal); The input signal has a shape u0 = −e2,
i.e., only the second node is subject to disturbance. Top row shows the responses of original icelandic grid, and the bottom row
shows the responses of network with increased connectivity. Red dashed line shows the response of ḡ(s) subject to the averaged
input ū(t) = 1⊤u(t)/n. Blue solid line shows the Center-of-Inertia frequency of the grid yCOI = (

∑n
i=1 miyi)/(

∑n
i=1 mi).

However, as we show in the next example, when one
considers more involved models, it is challenging to find
parameters that accurately fit the aggregate dynamics.

Example 17 For generators given by the swing model
with turbine droop gi(s) =

1

mis+di+
r
−1
i

τis+1

, where r−1
i and

τi are the droop coefficient and turbine time constant
of generator i, respectively. The aggregate dynamics are
given by

gaggr(s) =
1

maggrs+ daggr +
∑n

i=1
r−1
i

τis+1

. (15)

Here the parameters are θ = {m, d, r−1, τ}. This exam-
ple illustrates, in particular, the difficulty in aggregating
generators with heterogeneous turbine time constants.
If the τi are heterogeneous, then gaggr(s) is a high-order
transfer function and cannot be accurately represented
by a single generator model parametrized by θ. The ag-
gregation of generators essentially asks for a low-order
approximation of gaggr(s). Our analysis reveals the fun-
damental limitation of using conventional approaches
seeking aggregate dynamics with the same structure of
individual generators. Furthermore, by characterizing
the aggregate dynamics in the explicit form gaggr(s), one
can developmore accurate low-order approximation [48].
Lastly, we emphasize that our analysis does not depend
on a specific model of generator dynamics gi(s), hence
it provides a general methodology to aggregate coherent
generator networks.

7 Conclusions

In this paper, we studies network coherence as a low-rank
property of the transfer matrix T (s) in the frequency do-
main. The analysis leads to useful characterizations of
coordinated behavior and justifies the relation between
network coherence and network effective algebraic con-
nectivity. Our results suggest that network coherence is a
frequency-dependent phenomenon, which is numerically
illustrated in generator networks. Lastly, concentration
results for large-scale networks are presented, revealing
the exclusive role of the statistical distribution of node
dynamics in determining the coherent dynamics of such
networks. One interesting future work is to study the
dynamic behavior of large-scale networks with multiple
coherent groups. One could model the inter-community
interactions by replacing the dynamics of each commu-
nity with its coherent one, or more generally, a reduced
one. Although clustering, i.e. finding communities, for
homogeneous networks can be efficiently done by vari-
ous graph-based methods, it is still open for research to
find multiple coherent groups in heterogeneous dynam-
ical networks.

A Proof of Lemma 1

PROOF. Let H = V ⊤diag{g−1
i (s0)}V + f(s0)Λ, such

that (2) becomes T (s) = V H−1V ⊤. Then it is easy to
see that∥∥∥∥T (s0)− 1

n
ḡ(s0)11⊤

∥∥∥∥ = ∥T (s0)− ḡ(s0)V e1e
⊤
1 V

⊤∥

=
∥∥V (H−1 − ḡ(s0)e1e

⊤
1

)
V ⊤∥∥
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=
∥∥H−1 − ḡ(s0)e1e

⊤
1

∥∥ , (A.1)

where e1 is the first column of identity matrix In. The
first equality holds by noticing that 1√

n
is the first col-

umn of V .

With V =
[

1√
n

V⊥

]
, we write H in block matrix form:

H =

 1⊤
√
n

V ⊤
⊥

diag{g−1
i (s0)}

[
1√
n

V⊥

]
+ f(s0)Λ

:=

[
ḡ−1(s0) h⊤

21

h21 H22

]
,

where

h21 = V ⊤
⊥ diag{g−1

i (s0)}
1√
n
,

H22 = V ⊤
⊥ diag{g−1

i (s0)}V⊥ + f(s0)Λ̃ ,

Λ̃ = diag{λ2(L), · · · , λn(L)} .

Inverting H in its block form, we have

H−1 =

[
a −ah⊤

21H
−1
22

−aH−1
22 h21 H−1

22 + aH−1
22 h21h

⊤
21H

−1
22

]
,

where a = 1
ḡ−1(s0)−h⊤

21H
−1
22 h21

.

By our assumption, we have ∥diag{g−1
i (s0)}∥ =

max1≤i≤n |g−1
i (s0)| ≤ M2 , then

∥h21∥ =

∥∥∥∥V ⊤
⊥ diag{g−1

i (s0)}
1√
n

∥∥∥∥
≤ ∥V⊥∥∥diag{g−1

i (s0)}∥
∥1∥√
n

≤ M2 , (A.2)

and

∥H−1
22 ∥ = ∥(f(s0)Λ̃ + V ⊤

⊥ diag{g−1
i (s0)}V⊥)

−1∥
= σmin

(
f(s0)Λ̃ + V ⊤

⊥ diag{g−1
i (s0)}V⊥

)
≤ 1

σmin(f(s0)Λ̃)− ∥V ⊤
⊥ diag{g−1

i (s0)}V⊥∥
≤ 1

σmin(f(s0)Λ̃)−M2

≤ 1

|f(s0)|λ2(L)−M2
,

(A.3)

whenever |f(s0)|λ2(L) > M2.

Lastly, when |f(s0)|λ2(L) > M2+M2
2M1, a similar rea-

soning as above, using (A.2) (A.3), and our assumption

|ḡ(s0)| ≤ M1, gives

|a| ≤ 1

|ḡ−1(s0)| − ∥h21∥2∥H−1
22 ∥

=
(|f(s0)|λ2(L)−M2)M1

|f(s0)|λ2(L)−M2 −M1M2
2

. (A.4)

Now we bound the norm ofH−1− ḡ(s0)e1e
⊤
1 by the sum

of norms of all its blocks:

∥H−1 − ḡ(s0)e1e
⊤
1 ∥

≤ |aḡ(s0)h⊤
21H

−1
22 h21|+ 2∥aH−1

22 h21∥
+ ∥H−1

22 + aH−1
22 h21h

⊤
21H

−1
22 ∥

≤ |a|∥H−1
22 ∥(|ḡ(s0)|∥h21∥2 + 2∥h21∥+ ∥h21∥2∥H−1

22 ∥)
+ ∥H−1

22 ∥ , (A.5)

Using (A.2)(A.3)(A.4), we can further upper bound
(A.5) as

∥H−1 − ḡ(s0)e1e
⊤
1 ∥ ≤ (M1M2 + 1)

2

|f(s0)|λ2(L)−M2 −M1M2
2

.

(A.6)
This bound holds as long as |f(s0)|λ2(L) > M2+M2

2M1.
Combining (A.1) and (A.6) gives the desired inequality.

B Proof of Theorem 6 and 9

When the input to the network is U(s), the output re-
sponse of the i-th node is

Yi(s) = e⊤i T (s)U(s) ,

where ei is the i-th column of the identity matrix In.

Using Mellin’s inverse formula [38, Theorem 3.20], we
have

|yi(t)− ȳ(t)|

=

∣∣∣∣ 1

2πj
lim

ω→∞

∫ σ+jω

σ−jω

est
(
Yi(s)− e⊤i ḡ(s)1

1⊤

n
U(s)

)
ds

∣∣∣∣
≤ eσ

2π
lim

ω→∞

∫ σ+jω

σ−jω

∣∣∣∣e⊤i T (s)U(s)− e⊤i ḡ(s)1
1⊤

n
U(s)

∣∣∣∣ ds
≤ eσ

2π
lim

ω→∞

∫ σ+jω

σ−jω

∥∥∥∥T (s)− 1

n
ḡ(s)11⊤

∥∥∥∥ ∥U(s)∥ds

=
eσ

2π
((A) + (B) + (C)) ,

where

(A) =

∫ σ+jω0

σ−jω0

∥∥∥∥T (s)− 1

n
ḡ(s)11⊤

∥∥∥∥ ∥U(s)∥ds ,
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(B) = lim
ω→∞

∫ σ+jω

σ+jω0

∥∥∥∥T (s)− 1

n
ḡ(s)11⊤

∥∥∥∥ ∥U(s)∥ds ,

(C) = lim
ω→∞

∫ σ−jω0

σ−jω

∥∥∥∥T (s)− 1

n
ḡ(s)11⊤

∥∥∥∥ ∥U(s)∥ds .

Both proofs uses such decomposition. By our assump-
tion,

(B) = lim
ω→∞

∫ σ+jω

σ+jω0

∥∥∥∥T (s)− 1

n
ḡ(s)11⊤

∥∥∥∥ ∥U(s)∥ds

≤ lim
ω→∞

∫ σ+jω

σ+jω0

(∥T (s)∥+ ∥ḡ(s)∥) ∥U(s)∥ds

≤ 2γ lim
ω→∞

∫ σ+jω

σ+jω0

∥U(s)∥ds ,

where the last inequality uses the fact that ḡ(s) and
T (s) are stable: ∥ḡ(s)∥H∞ , ∥T (s)∥H∞ ≤ γ. Because for
the real input signals, we have U(s∗) = U∗(s), hence∫ σ−jω0

σ−jω
∥U(s)∥ds =

∫ σ+jω

σ+jω0
∥U(s)∥ds , which leads to

(C) ≤ 2γ lim
ω→∞

∫ σ+jω

σ+jω0

∥U(s)∥ds .

Now we are ready to prove Theorem 6 and 9.

PROOF. [Proof of Theorem 6] First of all, Mellin’s
inverse formula requires that the vertical line Re(s) = σ
is on the right of all poles of the signal. This is the case
from our assumption that supRe(s)>σ ∥U(s)∥ < +∞ and

that T (s), ḡ(s) being stable.

By the assumption that limω→∞
∫ σ+jω

σ+j0
∥U(s)∥ds is fi-

nite, one can pick an ω0 > 0, such that

lim
ω→∞

∫ σ+jω

σ+jω0

∥U(s)∥ds ≤ 2πϵ

6eσγ
,

which leads to

(B) ≤ 2γ lim
ω→∞

∫ σ+jω

σ+jω0

∥U(s)∥ds ≤ 2πϵ

3eσ
.

Similarly, we have (C) ≤ 2πϵ
3eσ .

For the remaining term, we have

(A) =

∫ σ+jω0

σ−jω0

∥∥∥∥T (s)− 1

n
ḡ(s)11⊤

∥∥∥∥ ∥U(s)∥ds

≤ sup
w∈[−w0,w0]

∥∥∥∥T (σ + jw)− 1

n
ḡ(σ + jw)11⊤

∥∥∥∥
×
∫ σ+jω0

σ−jω0

∥U(s)∥ds

Since [σ − jω0, σ + jω0] is a compact set that satisfies
the assumption in Theorem 2, we have

lim
λ2(L)→∞

sup
w∈[−w0,w0]

∥∥∥∥T (σ + jw)− 1

n
ḡ(σ + jw)11⊤

∥∥∥∥ = 0 .

Therefore, for sufficiently large λ2(L), we have (A) ≤
2πϵ
3eσ . Combining the upperbounds for (A), (B), (C), we
have

|yi(t)− ȳ(t)| ≤ ϵ .

Notice that the choice of λ2(L) does not depends on time
t, hence this inequality holds for all t > 0.

PROOF. [Proof of Theorem 9] Here, the input is a
sinusoidal signal U(s) = α

s2+α2u0, u0 ∈ Sn−1. Mellin’s

inverse formula requires that the vertical line Re(s) = σ
is on the right of all poles of the signal, which is satisfied
under any choice σ > 0. For our purpose, we pick

σ = α, ω0 = Kα ,

for some K > 0 (to be determined later). By our as-
sumption,

(B) ≤ 2γ lim
ω→∞

∫ σ+jω

σ+jω0

∣∣∣∣ α

s2 + α2

∣∣∣∣ ∥u0∥ds

= 2γ

∫ +∞

ω0

α

|(σ + jω)2 + α2|dω

= 2γ

∫ +∞

Kα

α

|(α+ jω)2 + α2|dω

= 2γ

∫ +∞

Kα

α√
4α4 + ω4

dω

≤ 2
√
2γ

∫ +∞

Kα

α

2α2 + ω2
dω

= γ

(
π − 2 arctan

(
K√
2

))
, (B.1)

where the last inequality use the fact that for a, b > 0,
we have √

a2 + b2 ≥ (a+ b)/
√
2 .

Similarly, we have

(C) ≤ γ

(
π − 2 arctan

(
K√
2

))
. (B.2)

For the remaining term, we use the result in the proof
of Theorem 3: ∃δ > 0, such that ∀s ∈ B(0, δ) such that

∥∥∥∥T (s)− 1

n
ḡ(s)11⊤

∥∥∥∥ ≤ 2 (M1M2 + 1)
2

|f(s)|λ2(L)
,

12



for some M1,M2 > 0. Then as long as we pick α,K
appropriately such that |σ+ jω0| ≤ δ, i.e.,

√
1 +K2α ≤

δ, we have

(A) =

∫ σ+jω0

σ−jω0

∥∥∥∥T (s)− 1

n
ḡ(s)11⊤

∥∥∥∥ ∣∣∣∣ α

s2 + α2

∣∣∣∣ ds
≤
∫ σ+jω0

σ−jω0

2 (M1M2 + 1)
2

|f(s)|λ2(L)

∣∣∣∣ α

s2 + α2

∣∣∣∣ ds
=

∫ σ+jω0

σ−jω0

2 (M1M2 + 1)
2

λ2(L)/|s|
α

|s2 + α2|ds

=
2 (M1M2 + 1)

2

λ2(L)

∫ σ+jω0

σ−jω0

|s|α
|s2 + α2|ds

=
4 (M1M2 + 1)

2

λ2(L)

∫ Kα

0

|α+ jω|α
|(α+ jω)2 + α2|dω

=
4 (M1M2 + 1)

2

λ2(L)

∫ Kα

0

√
α2 + ω2α√
4α4 + ω4

dω

≤ 2
√
2 (M1M2 + 1)

2

λ2(L)

∫ Kα

0

2(α+ ω)α

2α2 + ω2
dω ,

where the last equality used the fact that for a, b > 0,
we have

a+ b ≥
√
a2 + b2 ≥ (a+ b)/

√
2 ,

to upper and lower bound the numerator and denomi-
nator respectively. Notice that∫ Kα

0

2(α+ ω)α

2α2 + ω2
dω

= α

(√
2 arctan

(
K√
2

)
+ log

(
1 +

K2

2

))
≤ 2α log

(
K2

2

)
, (B.3)

for sufficiently large K. We have

(A) ≤ 4
√
2 (M1M2 + 1)

2

λ2(L)
α log

(
K2

2

)
. (B.4)

The last step is to find the right choice of α,K. Given
ϵ > 0, pick a K > 0, such that

2γ

(
π − 2 arctan

(
K√
2

))
≤ ϵπ

2
.

Generally such a K is sufficient for (B.3) to hold. With
this choice of K, let

α0 :=

min

{
log 2,

ϵπλ2(L)

8
√
2(M1M2 + 1)2 log

(
K2

2

) , δ√
1 +K2

}
.

Then, ∀α ≤ α0, combining (B.1)(B.2)(B.4), we have

|yi(t)− ȳ(t)|

≤ eσ

2π
((A) + (B) + (C))

≤ eα0

2π

(
2γ

(
π − 2 arctan

(
K√
2

))
+

4
√
2 (M1M2 + 1)

2

λ2(L)
α log

(
K2

2

))
≤ 1

π

(ϵπ
2

+
ϵπ

2

)
= ϵ .

Notice that the choice of α0,K does not depends on time
t, nor the node index i, hence this inequality holds for
all t > 0 and all i ∈ [n].

C Proof of Theorem 7

For each gi(s), i = 1, · · · , n, we have, by the OSP prop-
erty,

Re(gi(s)) ≥ ϵ|gi(s)|2,∀Re(s) > 0 .

That is,
Re(G(s)) ⪰ ϵG∗(s)G(s) ,

or equivalently,

[
G(s)

I

]∗ [
−ϵI I

I 0

][
G(s)

I

]
⪰ 0 . Since

gi(s) are all OSP, then gi(s) is positive real [49]. A pos-
itive real function that is not zero function has no zero
nor pole on the left half plane. Therefore gi(s) are in-
vertible for all Re(s) > 0, which ensures that G(s) is
invertible for all Re(s) > 0. Then

(G∗(s))−1

[
G(s)

I

]∗ [
−ϵI I

I 0

][
G(s)

I

]
G−1(s) ⪰ 0 ,

which is[
I

G−1(s)

]∗ [
−ϵI I

I 0

][
I

G−1(s)

]
⪰ 0 . (C.1)

Notice that

T (s) = (I +G(s)f(s)L)−1G(s) = (G−1(s) + f(s)L)−1 ,

then from (C.1) and the fact that f(s) is PR, we have[
I

T−1(s)

]∗ [
−ϵI I

I 0

][
I

T−1(s)

]

=

[
I

G−1(s) + f(s)L

]∗ [
−ϵI I

I 0

][
I

G−1(s) + f(s)L

]

13



=

[
I

G−1(s)

]∗ [
−ϵI I

I 0

][
I

G−1(s)

]
+ [f∗(s) + f(s)]L

⪰
[

I

G−1(s)

]∗ [
−ϵI I

I 0

][
I

G−1(s)

]
⪰ 0 .

Now for sufficiently large γ > 0, we have[
−ϵI I

I 0

]
+

[
ϵ
2I 0

0 −γ2 ϵ
2I

]
=

[
− ϵ

2I I

I −γ2 ϵ
2I

]
⪯ 0 ,

since its Schur complement (− ϵ
2 +

2
ϵγ2 )I ⪯ 0 for large γ.

Therefore,

[
I

T−1(s)

]∗ [
− ϵ

2I 0

0 γ2 ϵ
2I

][
I

T−1(s)

]

⪰
[

I

T−1(s)

]∗ [
−ϵI I

I 0

][
I

T−1(s)

]
⪰ 0 ,

which is exactly, γ2 ϵ
2 (T

−1(s))∗(T−1(s)) ⪰ ϵ
2I . This

shows that

σ2
min(T

−1(s)) ≥ 1

γ2
,∀Re(s) > 0 , (C.2)

which is equivalent to ∥T (s)∥2 ≤ γ , ∀Re(s) > 0 . More-
over, (C.2) implies

|ḡ−1(s)| =
∣∣∣∣ 1⊤
√
n
T−1(s)

1√
n

∣∣∣∣2 ≥ 1

γ2
,∀Re(s) > 0 ,

which is equivalent to ∥ḡ(s)∥2 ≤ γ,∀Re(s) > 0.

References

[1] H. Min and E. Mallada, “Dynamics concentration of large-
scale tightly-connected networks,” in IEEE 58th Conf. on
Decision and Control, pp. 758–763, 2019.

[2] P. C. Bressloff and S. Coombes, “Travelling waves in chains of
pulse-coupled integrate-and-fire oscillators with distributed
delays,” Physica D: Nonlinear Phenomena, vol. 130, no. 3-4,
pp. 232–254, 1999.

[3] I. Z. Kiss, Y. Zhai, and J. L. Hudson, “Emerging coherence
in a population of chemical oscillators,” Science, vol. 296,
no. 5573, pp. 1676–1678, 2002.

[4] M. H. DeGroot, “Reaching a consensus,” Journal of the
American Statistical Association, vol. 69, no. 345, pp. 118–
121, 1974.

[5] R. E. Mirollo and S. H. Strogatz, “Synchronization of pulse-
coupled biological oscillators,” SIAM Journal on Applied
Mathematics, vol. 50, no. 6, pp. 1645–1662, 1990.

[6] Y. Jiang, R. Pates, and E. Mallada, “Performance tradeoffs of
dynamically controlled grid-connected inverters in low inertia
power systems,” in 56th IEEE Conf. on Decision and Control,
pp. 5098–5105, 12 2017.

[7] F. Paganini and E. Mallada, “Global analysis of
synchronization performance for power systems: Bridging the
theory-practice gap,” IEEE Trans. Automat. Contr., vol. 65,
no. 7, pp. 3007–3022, 2020.

[8] E. Mallada, X. Meng, M. Hack, L. Zhang, and
A. Tang, “Skewless network clock synchronization without
discontinuity: Convergence and performance,” IEEE/ACM
Transactions on Networking (TON), vol. 23, pp. 1619–1633,
10 2015.

[9] E. Mallada, Distributed synchronization in engineering
networks: The Internet and electric power girds. PhD thesis,
Electrical and Computer Engineering, Cornell University, 01
2014.

[10] R. Sepulchre, D. Paley, and N. Leonard, “Stabilization of
planar collective motion with limited communication,” IEEE
Trans. Automat. Contr., vol. 53, no. 3, pp. 706–719, 2008.

[11] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and
cooperation in networked multi-agent systems,” Proceedings
of the IEEE, vol. 95, no. 1, pp. 215–233, 2007.

[12] A. Jadbabaie, J. Lin, and A. Morse, “Coordination of groups
of mobile autonomous agents using nearest neighbor rules,”
IEEE Trans. Automat. Contr., vol. 48, no. 6, pp. 988–1001,
2003.

[13] B. Bamieh, M. R. Jovanovic, P. Mitra, and S. Patterson,
“Coherence in large-scale networks: Dimension-dependent
limitations of local feedback,” IEEE Trans. Automat. Contr.,
vol. 57, no. 9, pp. 2235–2249, 2012.

[14] J. H. Chow, Power system coherency and model reduction.
New York, NY, USA: Springer, 2013.

[15] J. H. Chow, Time-scale modeling of dynamic networks with
applications to power systems. Springer, 1982.

[16] G. N. Ramaswamy, L. Rouco, O. Fillatre, G. C. Verghese,
P. Panciatici, B. C. Lesieutre, and D. Peltier, “Synchronic
modal equivalencing (sme) for structure-preserving dynamic
equivalents,” IEEE Transactions on Power Systems, vol. 11,
no. 1, pp. 19–29, 1996.

[17] D. Romeres, F. Dörfler, and F. Bullo, “Novel results on
slow coherency in consensus and power networks,” in 2013
European Control Conference (ECC), pp. 742–747, 2013.

[18] I. Tyuryukanov, M. Popov, M. A. M. M. van der Meijden, and
V. Terzija, “Slow coherency identification and power system
dynamic model reduction by using orthogonal structure
of electromechanical eigenvectors,” IEEE Transactions on
Power Systems, vol. 36, no. 2, pp. 1482–1492, 2021.

[19] J. Fritzsch and P. Jacquod, “Long wavelength coherency
in well connected electric power networks,” IEEE Access,
vol. 10, pp. 19986–19996, 2022.

[20] Y. Jiang, R. Pates, and E. Mallada, “Dynamic droop
control in low inertia power systems,” IEEE Transactions on
Automatic Control, vol. 66, pp. 3518–3533, 8 2021.

[21] Y. Jiang, A. Bernstein, P. Vorobev, and E. Mallada, “Grid-
forming frequency shaping control in low inertia power
systems,” IEEE Control Systems Letters (L-CSS), vol. 5,
pp. 1988–1993, 12 2021. also in ACC 2021.

[22] E. Ekomwenrenren, Z. Tang, J. W. Simpson-Porco,
E. Farantatos, M. Patel, and H. Hooshyar, “Hierarchical
coordinated fast frequency control using inverter-based
resources,” IEEE Transactions on Power Systems, vol. 36,
no. 6, pp. 4992–5005, 2021.

14



[23] E. Tegling, B. Bamieh, and H. Sandberg, “Localized high-
order consensus destabilizes large-scale networks,” in 2019
American Control Conference (ACC), pp. 760–765, July
2019.

[24] H. G. Oral, E. Mallada, and D. F. Gayme, “Performance
of first and second order linear networked systems over
digraphs,” in IEEE 56th Annu. Conf. on Decision and
Control, pp. 1688–1694, Dec 2017.

[25] B. Bamieh and D. F. Gayme, “The price of synchrony:
Resistive losses due to phase synchronization in power
networks,” in 2013 American Control Conference, pp. 5815–
5820, 2013.

[26] M. Andreasson, E. Tegling, H. Sandberg, and K. H.
Johansson, “Coherence in synchronizing power networks with
distributed integral control,” in IEEE 56th Annu. Conf. on
Decision and Control, pp. 6327–6333, Dec 2017.

[27] M. Pirani, J. W. Simpson-Porco, and B. Fidan, “System-
theoretic performance metrics for low-inertia stability of
power networks,” in 2017 IEEE 56th Annual Conference on
Decision and Control (CDC), pp. 5106–5111, 2017.

[28] A. J. Germond and R. Podmore, “Dynamic aggregation of
generating unit models,” IEEE Trans. Power App. Syst.,
vol. PAS-97, pp. 1060–1069, July 1978.

[29] R. Olfati-Saber and R. Murray, “Consensus problems in
networks of agents with switching topology and time-delays,”
IEEE Trans. Automat. Contr., vol. 49, no. 9, pp. 1520–1533,
2004.

[30] Y. Ghaedsharaf, M. Siami, C. Somarakis, and N. Motee,
“Centrality in time-delay consensus networks with structured
uncertainties,” arXiv preprint arXiv:1902.08514, 2019.

[31] S. Nair and N. Leonard, “Stable synchronization of
mechanical system networks,” SIAM Journal on Control and
Optimization, vol. 47, no. 2, pp. 661–683, 2008.

[32] H. Kim, H. Shim, and J. Seo, “Output consensus of
heterogeneous uncertain linear multi-agent systems,” IEEE
Trans. Automat. Contr., vol. 56, no. 1, pp. 200–206, 2011.

[33] P. Wieland, R. Sepulchre, and F. Allgöwer, “An internal
model principle is necessary and sufficient for linear output
synchronization,” Automatica, vol. 47, no. 5, pp. 1068–1074,
2011.

[34] P. M. Anderson and M. Mirheydar, “A low-order system
frequency response model,” IEEE Trans. Power Syst., vol. 5,
no. 3, pp. 720–729, 1990.

[35] S. S. Guggilam, C. Zhao, E. Dall’Anese, Y. C. Chen, and
S. V. Dhople, “Optimizing DER participation in inertial
and primary-frequency response,” IEEE Trans. Power Syst.,
vol. 33, pp. 5194–5205, Sep. 2018.

[36] W. Rudin et al., Principles of mathematical analysis, vol. 3.
McGraw-hill New York, 1964.

[37] H. Min, R. Pates, and E. Mallada, “Coherence and
concentration in tightly-connected networks,” arXiv preprint
arXiv:2101.00981, 2021.

[38] G. E. Dullerud and F. Paganini, A course in robust control
theory: a convex approach, vol. 36. Springer Science &
Business Media, 2013.

[39] H. Marquez and C. Damaren, “Comments on ”strictly
positive real transfer functions revisited,” IEEE Transactions
on Automatic Control, vol. 40, no. 3, pp. 478–479, 1995.

[40] I. Lestas and G. Vinnicombe, “Scalable decentralized
robust stability certificates for networks of interconnected
heterogeneous dynamical systems,” IEEE Transactions on
Automatic Control, vol. 51, no. 10, pp. 1613–1625, 2006.

[41] U. T. Jönsson and C.-Y. Kao, “A scalable robust stability
criterion for systems with heterogeneous lti components,”
IEEE Transactions on Automatic Control, vol. 55, no. 10,
pp. 2219–2234, 2010.

[42] R. Pates and E. Mallada, “Robust scale-free synthesis for
frequency control in power systems,” IEEE Transactions on
Control of Network Systems, vol. 6, no. 3, pp. 1174–1184,
2019.

[43] G. Ramaswamy, G. Verghese, L. Rouco, C. Vialas, and
C. DeMarco, “Synchrony, aggregation, and multi-area
eigenanalysis,” IEEE Transactions on Power Systems,
vol. 10, no. 4, pp. 1986–1993, 1995.

[44] F. Wu and N. Narasimhamurthi, “Coherency identification
for power system dynamic equivalents,” IEEE Transactions
on Circuits and Systems, vol. 30, no. 3, pp. 140–147, 1983.

[45] S. Sastry and P. Varaiya, “Coherency for interconnected
power systems,” IEEE Transactions on Automatic Control,
vol. 26, no. 1, pp. 218–226, 1981.

[46] M. Z. Q. Chen and M. C. Smith, “A note on tests for positive-
real functions,” IEEE Transactions on Automatic Control,
vol. 54, no. 2, pp. 390–393, 2009.

[47] U. of Edinburgh, “Power systems test case archive.” Mar.
2003.

[48] H. Min, F. Paganini, and E. Mallada, “Accurate reduced-
order models for heterogeneous coherent generators,” IEEE
Contr. Syst. Lett., vol. 5, no. 5, pp. 1741–1746, 2021.

[49] H. K. Khalil and J. W. Grizzle, Nonlinear systems, vol. 3.
Prentice hall Upper Saddle River, NJ, 2002.

15


