
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. XX, XXXX 2017 1

Learning to Act Safely with Limited Exposure
and Almost Sure Certainty

Agustin Castellano , Student Member, IEEE , Hancheng Min , Student Member, IEEE ,
Juan Andres Bazerque , Member, IEEE , and Enrique Mallada , Senior Member, IEEE

Abstract— This paper puts forward the concept that
learning to take safe actions in unknown environments,
even with probability one guarantees, can be achieved
without the need for an unbounded number of exploratory
trials. This is indeed possible, provided that one is willing to
navigate trade-offs between optimality, level of exposure to
unsafe events, and the maximum detection time of unsafe
actions. We illustrate this concept in two complementary
settings. We first focus on the canonical multi-armed bandit
problem and study the intrinsic trade-offs of learning safety
in the presence of uncertainty. Under mild assumptions on
sufficient exploration, we provide an algorithm that prov-
ably detects all unsafe machines in an (expected) finite
number of rounds. The analysis also unveils a trade-off
between the number of rounds needed to secure the en-
vironment and the probability of discarding safe machines.

We then consider the problem of finding optimal poli-
cies for a Markov Decision Process (MDP) with almost
sure constraints. We show that the action-value function
satisfies a barrier-based decomposition which allows for
the identification of feasible policies independently of the
reward process. Using this decomposition, we develop
a Barrier-learning algorithm, that identifies such unsafe
state-action pairs in a finite expected number of steps. Our
analysis further highlights a trade-off between the time lag
for the underlying MDP necessary to detect unsafe actions,
and the level of exposure to unsafe events. Simulations
corroborate our theoretical findings, further illustrating the
aforementioned trade-offs, and suggesting that safety con-
straints can speed up the learning process.

Index Terms— Uncertain systems, randomized algo-
rithms, Markov processes, iterative learning control, opti-
mal control

I. INTRODUCTION

Motivated by the success of machine learning in achieving
super human performance, e.g., in vision [3], speech [4], and
video games [5], there has been recent interest in developing

A preliminary version of Section II was first presented in [1]. A more
in-depth discussion of Section III-F can be found in [2].

A. Castellano, H. Min and E. Mallada are with the Department of Elec-
trical and Computer Engineering at Johns Hopkins University, Baltimore,
MD 21218 USA (e-mail: {acaste11,hanchmin,mallada}@jhu.edu).

J. A. Bazerque is with the Department of Electrical Engineering at
University of Pittsburgh, PA, 15213 (e-mail: juanbazerque@pitt.edu).

The work at Johns Hopkins was supported by NSF through grants
CAREER 1752362, CPS 2136324, and TRIPODS 1934979. Bazerque’s
work was supported by ANII FSE 1 2019 1 159457.

learning-enabled technology that can implement highly com-
plex actions for safety-critical autonomous systems, such as
self-driving cars, robots, etc. However, without proper safety
guarantees such systems will rarely be deployed. There is
therefore the need to develop analysis tools and algorithms
that can provide such guarantees during, and after, training.
Efforts to provide such guarantees can be broadly grouped in
two lines of work with somehow complementary success.

The first approach leverages model-based techniques, based
on Lyapunov stability [6] and robust control [7], to provide
(worst-case) safety guarantees based on a nominal model and
assumptions on uncertainty and disturbances [8]–[11]. In such
settings, safety is usually specified in terms of stability, robust
stability, or the existence of some invariant or control invariant
sets. Moreover, due to the worst-case approach to uncertainty,
these methods tend to suffer poor performance in settings
where the uncertainty is large, or the system performance is
highly sensitive to model-uncertainty.

The second line of work, in which ours naturally lies , seeks
to provide safety guarantees in model-free settings by adding
constraints to the learning problem [12]–[19]. In this way,
safety specifications can be further extended, beyond typical
control notions, at the expense of introducing uncertainty and
risk in the safety guarantees. More precisely, constraints in
this body of work are probabilistic, either in expected value,
critical value-at-risk, or high-probability, which do not allow
for settings with hard constraints that need to be satisfied with
probability one (w.p.1). Moreover, the satisfaction guarantees
for these constraints are also generally provided probabilisti-
cally, via (expected) regret, or in high probability.

Naturally, both methodologies have their advantages. On the
one hand, model-based methods can impose probability one
constraints, and can also guarantee their satisfaction w.p.1. On
the other hand, model-free methods can handle problems with
high degree of uncertainty, and are particularly suited for cases
where constraints and objectives are difficult to formalize. Our
work aims for robust safety guarantees more similar to the
first approach (i.e., in an almost-sure sense), while borrowing
methodologies from the second one (i.e., in a model-free
setting), in an attempt to “get the best of both worlds.”

A. Contributions

One of the driving arguments of our work is that, due to
the logical (safe/unsafe) nature of safety assessment, finding
safe actions is a problem fundamentally different (and easier

https://orcid.org/0000-0003-3491-5746
https://orcid.org/0000-0003-0600-3854
https://orcid.org/0000-0001-9950-1208
https://orcid.org/0000-0003-1568-1833

2 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. XX, XXXX 2017

to solve) than finding the best one. To that end, we model
safety assessment by a damage signal Dt ∈ {0, 1}, with 1
indicating an unsafe event. We develop safety-assessment al-
gorithms that learn which actions (or state-action pairs) satisfy
safety specifications—w.p.1—both on Multi-armed Bandits
(MABs) [20] and Markov Decision Processes (MDPs) [21].

The algorithms we develop for both MABs and MDPs learn
the set of all feasible policies. In both cases we provide explicit
finite bounds on the (expected) time needed to learn this set. It
is important to note, though, that since our approach is model-
free, unsafe events during training are unavoidable. That being
said, during training our algorithms also limit the number
of constraint violations. We refer to the latter as exposure
throughout the paper, and define it both for MABs and MDPs.
Under both settings we also provide relaxed formulations
of the problems that allow for less restrictive constraints.
Specifically, we consider scenarios that admit policies that
endure some damage along the trajectory.

Early developments for MABs were first presented in [1].
New to this work are extensions of all the results to λ-soft
strategies (Definition 4), as well as an improved bound for
Theorem 2. The framework for MDPs was first introduced in
[2], but with no theoretical proofs. This paper contains all the
proofs that support our theory.

B. Related work

Safety in multi-armed bandits can be posed as guarantee-
ing that with high probability the expected cost of pulling
an arm lies below a certain threshold. It has been studied
in the linear setting [22], [23] and when both the reward
and cost functions follow Gaussian Processes [24], yielding
methods similar to the celebrated Upper Confidence Bound
algorithm [25] that first explore and expand a safe set and then
focus on controlling regret [26]. In contrast, in Section II we
consider safety for a binary approach, where the probability
of an arm failing follows a Bernoulli distribution (of unknown
parameter). Instead of expanding a safe region known a priori,
our algorithm sequentially eliminates unsafe arms.

Safety in control is usually specified in terms of reaching
a certain region of the state space. In the context of learning,
many works seek to apply Lyapunov design [9], sometimes
in tandem with Gaussian processes [8], [10] to obtain safe
policies. Other proposed methods are related to using control
barrier functions [27], [28] to specify safety guarantees and
embed them into the cost to be optimized [11]. While very
powerful, these methods usually require knowledge of the
system dynamics or a candidate Lyapunov/barrier function.
Our framework on the other hand is model-free and thus
assumes no prior knowledge. Safety specifications are implic-
itly captured by the damage signal and the transition kernel,
yielding a safe region of the state space akin to what is
achieved by computing backward reachable sets [29], [30].

Constraints in MDPs are typically formulated as
expectation-based constraints [31] or as critical value-at-risk
[32]. If the transitions and rewards are known, an optimal
stationary policy for the first kind can be found as the solution
of a linear program [33]. Under unknown dynamics, typical

strategies rely on primal-dual methods [15]–[17], [34]–[37] ,
or on exploring and approximating the safety region [13], [14],
[18]. The main difference in the approach of Section III is that
we propose an MDP problem with almost sure constraints.
Its particular nature proves useful in the sense that the set of
feasible policies can be characterized in (expected) finite time.

Controller Synthesis has also been used in the context of
RL, where constraints are specified as high-level objectives
given by Linear Temporal Logic [38]–[40]. In these works the
goal is a policy that maximizes the probability of satisfying
a set of tasks [40]. These methods are powerful in the sense
that they can capture a broad range of objectives and in some
cases, even work on continuous spaces [41]. That being said,
such methods rely on reward-shaping techniques that couple
feasibility/safety with optimality. Our work decouples such
problems (via the computation of a barrier function B∗).

C. Outline of the paper
Section II addresses safety specifications in MABs, of the

form P (Dt = 1|At) ≤ µ for some µ ≥ 0. While the
“flawless” case µ = 0 is rather straightforward (Section II-A),
the “relaxed” case µ > 0 requires to trade-off between quickly
discarding unsafe arms and accurately estimating P (Dt =
1|At), which we achieve with an arm-elimination algorithm
based on Sequential Probability Ratio Tests (SPRTs) [42]. We
focus on rapid (finite time) detection of unsafe actions almost
surely, which naturally requires to (mildly) give up optimality
by possibly discarding some safe arms (Section II-B).

Section III deals with the problem of RL for Constrained
Markov Decision Processes. Dealing first with the flawless
setting, we develop a decomposition framework (Section III-
B), based on hard barrier functions, that allows to decouple the
safety assessment problem from the problem of maximizing
rewards. This leads to a novel barrier learner algorithm, that
is able to identify all state-action pairs that lead to unsafe
events (Section III-C). Our analysis further shows the explicit
role that the delayed consequences have in the learning process
(Section III-D). Section III-F extends the RL setup to a relaxed
setting in which we seek policies that allow for a finite number
of unsafe events in any trajectory.

Numerical illustrations in Section IV verify our theoretical
analysis for MABs (Section IV-A) and further suggest that, in
the case of MDPs, learning the barrier first can aid in learning
a task-oriented navigation goal later (Section IV-B).

II. MULTI-ARMED BANDITS

We consider the setting of a stochastic bandit problem,
with K arms indexed as a ∈ {1, . . . ,K}. In the standard
bandit problem an agent aims to devise an arm-pulling policy
to optimize a reward. Here, we switch focus to the safety
problem, for which we consider that pulling some the arms
could be unsafe and lead to system damage or harm to the
agent. Specifically, at each round t ≥ 1 the agent pulls an
arm At and obtains a binary-valued damage indicator Dt.
If Dt is zero (one) this means that the action led to a safe
(unsafe) result. We have that E[Dt|At] = µAt

. Each machine
is therefore characterized by its safety parameter µa. The

AGUSTIN CASTELLANO et al.: LEARNING TO ACT SAFELY WITH LIMITED EXPOSURE AND ALMOST SURE CERTAINTY 3

greater this value is, the more likely it is that pulling the
machine will lead to an unsafe event. The goal of the player
in this setup is to identify all the machines that are µ-unsafe,
which is hereby defined.

Definition 1. Given a safety specification µ ∈ [0, 1), a
machine a is said to be µ-unsafe if and only if µa > µ.
Accordingly, a machine is µ-safe whenever µa ≤ µ.

The safety requirement µ is a design parameter, and is the
only data that the player has access to along with the signal
Dt. We will look at two distinct cases:
A) Flawless setting (µ = 0): in this setting any machine

with positive probability of giving damage (i.e. µa > 0)
is considered unsafe.

B) Relaxed setting (µ > 0): In this setting we want to
identify unsafe machines with µa > µ. This means that
we allow “somewhat defective” machines.

We will focus first on the flawless setting, as it will allow us
to build intuition on how to devise a proper Algorithm and
on the values of metrics involved. The solution in this case
is straightforward: let the agent pull each arm and avoid arms
that have led to an unsafe event Dt = 1. For the second case,
we will rely on building a one-sided Sequential Probability
Ratio Test (SPRT) [42], that will make us try each machine a
sufficient number of times; if the machine is unsafe, the test
will eventually decide on that hypothesis.

In both cases, our goal is the same. We want to detect all
the machines that are unsafe. To that end, let us define at each
round t ≥ 1 the candidate safe set At, which contains all the
arms that haven’t been classified as unsafe.

Assumption 1. Given a safety requirement µ, there are M
µ-unsafe machines, where 1 ≤ M ≤ K. Without loss of
generality we will assume the the first M arms to be µ-unsafe
(i.e. µa > µ, a = 1, . . . ,M)

Definition 2. For each round t ≥ 1 we define the candidate
safe set At as the set containing all the arms that have not
been classified as unsafe.

The set At is initialized as A0 := [K] = {1, . . .K}, and
sequentially trimmed down whenever an arm is found to be
unsafe. To select which arm to pull at each round, we consider
a strategy ψ, which assigns to a set of arms a probability of
sampling each arm in the set. We define it next.

Definition 3 (Strategy). A strategy ψ : 2[K] → ∆K is
a function mapping sets of machines to the K-dimensional
probability simplex, with the property that for any set A ⊆ [K]
it holds that the support of ψ(A) satisfies Supp (ψ (A)) ⊆ A.

The requirement that Supp (ψ (A)) ⊆ A ensures that (for
any set A) the strategy only assigns positive mass to arms
in A. Then, given a set A, the probability of sampling an
arm a is PA∼ψ(A)(A = a), where A is the (random) variable
corresponding to the arm being sampled. We will further use
the notation Pψ(A = a) when the set A is understood from
the context. Thus, given a set At at time t ≥ 0, ψ induces
a probability over a random action, At, to be taken with
probability Pψ(At = a).

We now define a class of strategies that are sufficiently
exploratory, in the sense that they sample each arm in the
candidate set with positive probability.

Definition 4 (λ-soft strategy). Given 0 < λ ≤ 1, a strategy ψ
is called λ-soft if ∀A ⊂ [K]

Pψ (A = a) ≥ λ

|A|
∀a ∈ A .

As stated above, λ-softness is a condition on sufficient
exploration of each arm. As a special case, the always-uniform
strategy is 1-soft.

Although we recognize that detecting unsafe machines
necessarily implies pulling from those unsafe arms, we want to
have a notion of whether our decision rules choose machines
in an efficient manner. It is with that goal in mind that we
define at each round the exposure.

Definition 5 (Exposure). For t ≥ 1 we define

Et =

t∑
τ=1

1 (µAτ
> µ) . (1)

where 1(x) = 1 if x is true and 0 otherwise. This metric
counts the rounds in which µ-unsafe machines have been
pulled, regardless of whether they led to an unsafe event or
not. Notice that the exposure inherits the randomness of the
sequence of decisions At. Our results throughout this section
will deal then with the expected value E[Et]. Ideally a good
player would be one that attains low exposure—meaning it
selects unsafe machines infrequently.

Remark 1. Throughout the remainder of this section, we show
that for λ-soft strategies E[Et] is bounded. This marks a stark
contrast with the notion of regret, typically studied in Bandit
settings [20], where unbounded regret is unavoidable [43].

At time t, the number of times arm a has been pulled is:

Na(t) =

t∑
τ=1

1(Aτ = a) . (2)

The following lemma states that the expected exposure coin-
cides with the sum of the expected number of pulls over the
unsafe machines.

Lemma 1. E[Et] =
∑M
a=1 E[Na(t)]

Proof.

E[Et]=
t∑

τ=1

E [1 (µAτ
>µ)]=

t∑
τ=1

K∑
a=1

P (Aτ =a)1 (µa>µ)

=

t∑
τ=1

M∑
a=1

P (Aτ =a)=

M∑
a=1

t∑
τ=1

E [1(Aτ =a)]=

M∑
a=1

E[Na(t)]

Definition 6. The conservation ratio Cε,t is the proportion of
safe machines kept at time t

Cε,t :=
|At ∩ A⋆ε|
|A⋆ε|

(3)

4 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. XX, XXXX 2017

where At is the candidate safe set and A⋆ε is the set containing
all arms that are (µ− ε)-safe: A⋆ε = {a ∈ A : µa ≤ µ− ε},
where 0 ≤ ε ≪ 1 is a non-negative slack parameter. We let
Cε,t ≡ 0 in the event |A⋆ε| = 0.

This ratio gives the proportion of (µ − ε)-safe machines
present in the candidate safe set at each time step. (Cε,t close
to 1 is desirable). The need for the conservativeness given by
ε is that we want to detect unsafe machines in finite time. This
will become clearer when we discuss the relaxed setting, for
now it suffices to assume ε = 0.

A. Flawless setting (µ = 0)

We start with the simplest case imaginable, which is that
of a rigorous safety requirement of µ = 0. In this setting, any
machine that has positive probability of giving damage Dt = 1
should be deemed unsafe. The strategy for discarding these
machines is pretty straightforward: at each round t select an
arm At following strategy ψ(At) and, if the resulting damage
is Dt = 1, classify the machine as unsafe by taking it out
of the candidate safe set At. This decision rule, summarized
in Algorithm 1 has two interesting properties: i) all unsafe
machines are eventually found, and ii) no safe machines are
discarded along the way, as the the following theorem states.

Algorithm 1: Flawless Inspector
Input: Number of arms K, strategy ψ.
/* Initialize candidate safe set */
A0 = {1, . . . ,K}
for t = 1, 2, . . . , do

Pick arm At ∼ ψ(At)
Observe damage Dt

if Dt = 1 then
/* trim unsafe arm */
At ← At−1 \ {At}

end
end

Theorem 1. Under Algorithm 1, for every strategy ψ, the
following (in)equalities hold with probability 1 for all t ≥ 1:

E[C0,t] = 1 (4)

E[Et] ≤
M∑
a=1

1

µa
(5)

Proof. The proof for the safety ratio C0,t is immediate, since
Algorithm 1 can never discard a safe machine (the event Dt =
1 has zero probability when pulling from a flawless arm). For
the remaining equalities, let Na be the number of pulls of the
a-th arm needed to classify it as unsafe, which is well-defined
(finite with probability one) for a = 1, . . . ,M . We have that
Na ∼ Geometric(µa), hence:

E[Na] =
∞∑
n=1

P (Na = n)n =

∞∑
n=1

µa(1−µa)n−1n =
1

µa
(6)

Furthermore, for all t we have Na(t) ≤ Na. Taking expec-
tation on both sides and using (6) yields E[Na(t)] ≤ 1

µa
.

Combining this with the result of Lemma 1 gives (5).

We now state that under a uniform strategy, Algorithm 1
finds all unsafe machines in expected finite time.

Theorem 2. Let ψ be a λ-soft strategy, and assume all M
unsafe machines satisfy µa ≥ µlow. Then Algorithm 1 finds all
unsafe machines in time T , whence:

E[T] ≤ 1

λµlow

(
M + (K −M) log(M + 1)

)
. (7)

Proof. The proof is in Appendix A.

Corollary 1 (Sample-complexity bound). For any δ ∈ (0, 1),
with probability at least 1 − δ, Algorithm 1 finds all unsafe
machines after at most(

1 + log
1

δ

)
1

λµlow

(
M + (K −M) log(M + 1)

)
.

Proof. The stopping time T defined in the previous theorem
is a sum of geometric random variables (see Appendix A). We
use the bound on its expected value along with a tail-bound
for sums of geometric random variables [44, Corollary 2.4]
with mean 1 + log 1/δ.

B. Relaxed setting (µ > 0)
We next consider the relaxed setting, in which we allow

machines that give damage Dt with (possibly low) probability
µ. This means that in order to identify unsafe machines we can
no longer discard them at first sign of damage, but must rather
pull from each arm and observe multiple unsafe events in
order to be confident that the machine in question is defective.
To check whether an arm a is defective or not we build the
following hypothesis test Ha:

(Ha)

{
H0 : µa ≤ µ− ε
H1 : µa > µ

(8)

in which the alternative hypothesis is that the machine is µ-
unsafe, and where we introduce the slack parameter ε ∈ (0, µ].
In order to solve (8), we will devise a Sequential Probability
Ratio Test (SPRT) which is based on Abraham Wald’s seminal
work [42] with the following properties:

1) If the machine is unsafe —meaning H1 is true— the test
will terminate in expected finite pulls E[Na].

2) If the machine is safe, the probability that the test —
incorrectly— decides on H1 is upper bounded by α,
where α ∈ (0, 1) is the failure tolerance of the test.

3) Lowering failure tolerance α necessarily implies more
pulls Na to detect unsafe machines.

4) If µa ∈ (µ− ε, µ) the test is inconclusive.
5) The test is one-sided: it only decides on H1. Similar to

Algorithm 1, whenever a machine is classified as unsafe
it is not pulled any longer.

For a fixed arm a, let da(t) = {Dτ : Aτ = a, τ ≤ t} be the
(binary) sequence of outcomes of the a-th machine up to time
t. The sequential probability ratio test relies on computing the
log-likelihood ratio at each time step:

AGUSTIN CASTELLANO et al.: LEARNING TO ACT SAFELY WITH LIMITED EXPOSURE AND ALMOST SURE CERTAINTY 5

Λa(t) = log
fµ(da(t))

fµ−ε(da(t))
, (9)

where fµ and fµ−ε are the likelihood that the sequence da(t)
came from independent Bernoulli trials of success rate µ
and µ − ϵ respectively. The test terminates by declaring H1

whenever
Λa(t) ≥ log(1/α) . (10)

By means of sufficient statistics, Λa(T) can be written as a
function of both k, the total number of outcomes of Dt = 1
and Na(T), the total number of pulls up to time T . For a
particular single arm the testing procedure is as follows. For
each round t ≥ 1 pull the arm and (given µ and ε) update
the log-likelihood in (9). If (10) holds, then terminate the test,
otherwise observe another sample Dt and repeat.

The following two lemmas state the desired behavior of the
SPRT. Namely, that i) if the machine is unsafe, the SPRT will
declare H1 with probability 1, ii) if the machine is safe, the
SPRT will (incorrectly) declare H1 with probability less than
or equal to α, and iii) the time of detection for unsafe machines
is finite in expectation, and is well characterized in terms of
the design parameters µ, ε and α.

Lemma 2. For a fixed arm a of parameter µa, consider the
sequential probability ratio test defined by (8)–(10), where µ,
ε and α are given. Then:

i) If H1 is true, the test will (correctly) declare H1 with
probability 1.

ii) If H0 is true, the test will keep going indefinitely with
probability ≥ 1− α

Proof. The proof is in the Appendix B of [45].

Lemma 3. For a fixed arm a of parameter µa, consider the
sequential probability ratio test defined by (8)–(10), where µ,
ε and α are given. Then, if the alternative H1 is true, the test
is expected to terminate after Ta steps, with:

E[Ta] ≤ 1 +
log (1/α)

kl(µ, µ− ε)
, (11)

where kl(µ, µ−ε) is the Kullback-Leibler divergence between
Bernoulli distributions:

kl(µ, µ− ε) = µ log
µ

µ− ε
+ (1− µ) log 1− µ

1− µ+ ε
. (12)

Proof. The proof is in the Appendix B of [45].

Remark 2. The preceding lemma elucidates the need for the
slack parameter ε: separating the two limiting distributions
enables termination of the test under H1 in finite time. It also
unveils two fundamental trade-offs. Firstly, if the distance be-
tween the limiting distributions increases (by enlarging ε), then
the test detects unsafe machines faster. However, it becomes
inconclusive over a larger proportion of the machines, since
nothing can be assured in the region µa ∈ (µ−ε, µ). Secondly,
α can be increased in order to detect unsafe machines faster,
though this comes at the cost of declaring H1 for a larger
proportion of the safe machines.

Algorithm 2: Relaxed Inspector
Input: Number of arms K, strategy ψ,
requirement µ, slack ε, tolerance α.
/* Init. safe set and ratios */
A0 = {1, . . . ,K}, Λa = 0 ∀a = 1, . . . ,K
for t = 1, 2 . . . do

Pick arm At ∼ ψ(At)
Observe damage Dt

/* Update log-likelihood ratio */

ΛAt
← ΛAt

+ log
fµ(Dt)
fµ−ε(Dt)

if ΛAt
≥ log(1/α) then

/* SPRT ends, trim unsafe arm */
At ← At−1 \ {At}

end
end

We build Algorithm 2 based on this SPRT, and state its
main properties in the following theorem.

Theorem 3. Under Algorithm 2, for every strategy psi, the
following inequalities hold with probability 1 for all t:

E[Cε,t] ≥ 1− α (13)

E[Et] ≤M
(
1 +

log (1/α)

kl(µ, µ− ε)

)
(14)

where kl(µ, µ−ε) is the Kullback-Leibler divergence between
Bernoulli distributions (12).

Proof. The proof follows from Lemma 2 and Lemma 3.

In the same spirit as for the flawless setting, we now state
that under a uniform strategy Algorithm 2 finds all unsafe
machines in expected finite time.

Theorem 4. Consider a λ-soft strategy ψ. Let T be the time it
takes for Algorithm 2 to detect all the unsafe machines under
ψ. Then:

E[T] ≤ M(K −M + 1)

λ

(
1 +

log(1/α)

kl(µ, µ− ε)

)
.

Proof. The proof can be found in the Appendix B.

We end this section by uniting the flawless and relaxed
settings, arguing that Algorithm 1 can be seen as a particular
case of the SPRT used in Algorithm 2.

Proposition 1. Given fixed µ ∈ (0, 1) and ε = βµ. When
β → 1−, Algorithm 2 with any α > 0 reduces to Algorithm 1.

Proof. The flawless setting only allows for perfectly safe
machines, discarding any arm at first sign of damage Dt = 1.
We will show that this coincides with a Sequential Probability
Ratio Test that compares H0 : µa ≤ 0 vs. H1 : µa > µ. This
will hold for any µ ∈ (0, 1) and for all α > 0.

For a fixed µ, consider the test defined in (8) with ε = βµ.
As β → 1−, the null hypothesisH0 becomes µa = 0. We show
that the log-likelihood ratio Λa(t) goes to infinity at first sign
of damage, thus declaring H1 and terminating the SPRT. A
sufficient statistic for computing the log-likelihood ratio Λa(t)

6 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. XX, XXXX 2017

is counting the k outcomes of Dτ = 1 in a total of t pulls.
Then Λa(t) = k log µ

µ−ε +(t−k) log 1−µ
1−µ+ε . Writing ε = βµ,

Λa(T) = t log 1−µ
1−µ(1−β) + k log 1−(1−β)µ

(1−β)(1−µ) −→
β→1−

∞ ∀k > 0.

Then the SPRT decides on the alternative H1 at first sign of
damage, no matter how small α is.

III. ASSURED REINFORCEMENT LEARNING

This section builds on the insights given by the MABs
to detect and discard unsafe policies in the context of RL.
Once more, we focus on two different settings. First the
flawless setting, which seeks policies whose probability of
encountering damage at any time (Dt = 1) is zero. Then, the
relaxed setting, which allows for a limited number of unsafe
events in a single trajectory.

A. Problem formulation and outline

Consider a Markov Decision Process M with finite state
space S, finite action space A, a reward set R, and a damage
indicator Dt ∈ {0, 1}. A transition kernel p specifies the con-
ditional transition probability p(s′, r, d | s, a) := P (St+1 =
s′, Rt+1 = r,Dt+1 = d | St = s,At = a), from state
s ∈ S and under action a ∈ A, to state s′ ∈ S resulting
in a reward r ∈ R and a damage indicator d. We define the
assured reinforcement learning problem as follows:

V ∗(s) :=max
π

Eπ

[∞∑
t=0

γtRt+1

∣∣ S0 = s

]
(15a)

s.t.: Pπ

(∞∑
t=0

Dt+1 ≤M | S0 = s

)
= 1 (15b)

where 0 < γ < 1 is a discount factor, M ∈ N, and Eπ and
Pπ denote the expectation and probability with respect to the
distribution induced by π. We call this an assured RL problem
because (15b) is a constraint that must be satisfied w.p.1.
That constraint reads as: “under policy π, starting from s, no
trajectory can accumulate more than M units of damage”. We
call this quantity M an allowable budget.

Analyzing this novel constraint calls for some work, and
we subdivide this in two scenarios. The case M = 0 (the
flawless setting) will be considered first, and we give great
breadth to its analysis. We show how to obtain feasible policies
in this case by developing a barrier function (Section III-B)
that encodes for constraint satisfaction. This barrier can be
learned independently of the reward process (Theorem 5), and
we show that the optimal barrier function can be attained in
expected finite time under a Barrier-learner algorithm (sections
III-C and III-D). Since the optimal barrier characterizes the
set of feasible policies (Remark 3), all feasible policies are
found in finite time (similarly as in the previous section). We
then present an assured version of the Q-learning algorithm
that makes use of this barrier. Finally, in Subsection III-F we
address the relaxed setting (M > 0), showing that it can be
reduced to the flawless setting in a suitably augmented MDP.

B. Value function decomposition
As argued previously, we will focus firstly on the flawless

setting (M = 0 in (15)), which amounts to:

V ∗(s) :=max
π

Eπ

[∞∑
t=0

γtRt+1

∣∣ S0 = s

]
(16a)

s.t.: Pπ

(∞∑
t=0

Dt+1 ≤ 0 | S0 = s

)
= 1 (16b)

Notice that, since Dt only takes values 0 or 1, (16b) can be
equivalently put in either of the following two ways:

(16b) ⇐⇒ Eπ

[∞∑
t=0

Dt+1

∣∣ S0 = s

]
≤ 0 (17)

⇐⇒ Pπ
(
Dt+1 = 0

∣∣ S0 = s
)
= 1 ∀t. (18)

The representation (17) is a cumulative constraint in expecta-
tion, which could be put in Lagrangian form (see e.g., [16]
[35]) in order to solve a primal-dual problem. We take an
alternative approach that will lead to finite time detection, and
resort to (18) instead. Our goal then is to solve:

V ∗(s) := max
π

Eπ

[∞∑
t=0

γtRt+1

∣∣ S0 = s

]
(19a)

s.t.: Pπ
(
Dt+1 = 0

∣∣ S0 = s
)
= 1 ∀t (19b)

With (19b) as constraint, there is a natural way to extend the
definition of exposure for MDPs.

Definition 7 (Exposure for MDPs). Consider an algorithm
that creates a sequence of state-action pairs (si, ai)

t
i=1. The

exposure at time t is:

Et :=

t∑
i=1

1

{
min
π

Pπ

(∞⋃
τ=0

{Dτ+1=1 |S0=si, A0=ai}

)
>0

}
.

Intuitively, the exposure at any step i is equal to one if
conditioned on starting at (si, ai) the constraint (19b) does
not hold for any policy. As such, it indicates whether a state-
action pair (si, ai) is unsafe. As in the bandits case, we will
show that this quantity can be bounded in expected value.
Although the expression above may seem cumbersome, we
will show that it can be equivalently put in terms of a hard-
barrier function that encodes safety, which we develop next.

With the formulation of (19), let us define the value function
V π for a specific policy π, in which the constraints are
embedded inside the expectation:

V π(s) := Eπ

[∞∑
t=0

(
γtRt+1 + I [Dt+1]

) ∣∣ S0 = s

]
(20)

where the hard barrier index function I [·] takes the form:

I [Dt+1] = log (1−Dt+1) =

{
0 if Dt+1 = 0

−∞ if Dt+1 = 1
(21)

so that it is null when the transition is safe, and takes the
value −∞ in the event of an unsafe transition. Being that
(21) is unbounded, expectations are defined in the sense of the
Lebesgue integral for functions in the extended real line [46].

AGUSTIN CASTELLANO et al.: LEARNING TO ACT SAFELY WITH LIMITED EXPOSURE AND ALMOST SURE CERTAINTY 7

The proposed value function definition (20) will prove
useful in two senses: firstly, we will show that maximizing
(20) is the same as (19a)–(19b). Secondly, the additional term
in (20) will allow for a barrier-based decomposition of the
value function, which will aid in the learning of constraints.

Lemma 4 (Equivalence). Problem (19) is equivalent to the
maximization of (20), that is

max
π

Eπ

[∞∑
t=0

(
γtRt+1 + I [Dt+1]

) ∣∣ S0 = s

]
(22)

Proof. If a policy π0 is unfeasible for Problem (19), then
∃t : P (Dt+1 = 1) > 0. This non-zero probability renders the
expected value in (22) to −∞ for π0. Conversely, if a policy π1
attains a finite objective for (22), then it must necessarily hold
that Dt+1 = 0 almost surely ∀t, and hence π1 is feasible for
(19). Therefore the feasible set of (19) coincides with the set
of policies that obtain a finite value for (22). Lastly, any policy
in any of these sets must satisfy log (1−Dt+1) = 0 ∀t, almost
surely, in which case the function being maximized is the
same. Then the optimal sets of the two problems coincide.

While solving (19) is of our utmost interest, we have just
shown that, to this end, we can solve (22) instead. In what
follows we will take this one step further, and show that (20)
admits a barrier-based decomposition and can be cast as the
sum of two value functions: one that checks only whether
the policy in consideration is feasible (which will be the main
focus of this work) and one that optimizes the return, provided
the policy is feasible. The main idea behind this decoupling
being that the search for feasible policies will be, in practice,
an easier task to undergo.
To this end we define an auxiliary hard-barrier value function
Hπ that will relate to V π:

Hπ(s) = Eπ

[∞∑
t=0

log (1−Dt+1)
∣∣ S0 = s

]
(23)

We proceed similarly for the action-value function Qπ and its
barrier counterpart Bπ:

Qπ(s, a)=Eπ

[∞∑
t=0

(
γtRt+1 + I [Dt+1]

)∣∣S0 = s,A0 = a

]

Bπ(s, a)=Eπ

[∞∑
t=0

log (1−Dt+1)
∣∣S0 = s,A0 = a

]
(24)

Our original goal is to find policies that are optimal for (22)
for each possible state. By contrast, maximizing (23) aims
to find safe policies, in the sense that they achieve a finite
value in (22). The main idea underpinning our work is that we
can jointly work on optimizing (23), which reduces the search
over the policy space, while at the same time maximizing the
return present in (22). In the following Theorem we establish a
fundamental separation principle between the value functions
and their auxiliary counterparts.

Theorem 5 (Separation principle). Assume rewards Rt+1 are
bounded almost surely for all t and the discount factor satisfies
γ < 1. Then, for every policy π:

V π(s) = V π(s) +Hπ(s) (25)

Qπ(s, a) = Qπ(s, a) +Bπ(s, a) (26)

Proof. We shall prove (25) only, since the proof for (26) is
alike. The following identities hold, as explained below.

V π(s) = Eπ

[∞∑
t=0

(
γtRt+1 + log (1−Dt+1)

) ∣∣ S0 = s

]

= Eπ

[∞∑
t=0

(
γtRt+1 + log (1−Dt+1)

) ∣∣ S0 = s

]
(27)

+ Eπ

[∞∑
t=0

log (1−Dt+1) | S0 = s

]
(28)

To show that V π(s) can be separated in (27) and (28), first
suppose policy π is feasible for Problem (22), in the sense
that it attains a finite-valued objective. This necessarily implies
that Dt+1 = 0 a.s. ∀t, which makes the second term in (27)
vanish. Conversely, suppose that the policy in consideration is
infeasible. This together with the fact that rewards are bounded
almost surely yields V π(s) = −∞, which is the same value
attained by both (27) and (28).

The preceding result implies non-trivial consequences. If
the learning agent can interact with the environment and have
access to rewards Rt+1 and queries of whether a transition has
been safe (i.e. Dt+1 = 0), then it can separately learn both
Qπ(s, a) and Bπ(s, a). This is discussed in the next remark.

Remark 3 (Properties of the optimal barrier function B∗).

B∗(s, a) = max
π

Bπ(s, a)

= max
π

Eπ

[∞∑
t=0

log (1−Dt+1)
∣∣ S0 = s,A0 = a

]
(29)

By definition, the entries of B∗ will either be 0 or −∞.
Having B∗(s, a) = −∞ means that starting from (s, a), no
policy is safe, in the sense that there is an (albeit small) non-
zero probability of encountering an unsafe event Dt+1 = 1,
regardless of the actions taken later. Conversely, if B∗(s, a) =
0 then, upon starting from (s, a), there exists (at least one)
policy that guarantees that no damage will be seen in the
future. As such, the optimal barrier function B∗ completely
characterizes the set of feasible, stationary policies Πsafe:

Πsafe = {π : π(a|s) = 0 whenever B∗(s, a) = −∞} (30)

In this sense, prior learning of B∗ helps constrain the search
of other known algorithms to only feasible policies.

Since the optimal barrier function characterizes the safety
of any state-action pair, it can be used to express exposure for
MDPs more succintly (c.f. Definition 7):

Remark 4 (Exposure in MDPs: alternate representation). The
exposure at time t ≥ 1 is:

Et =

t∑
τ=1

1 (B∗(Sτ , Aτ) = −∞) .

8 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. XX, XXXX 2017

C. Barrier learning

We now focus on the feasibility problem of learning B∗

from data. To that end, we state the following optimality
condition in the standard form of the Bellman’s equations.

Theorem 6 (Bellman equation for B∗(s, a)). The optimal
barrier function satisfies

B∗(s, a) = E
[
I [Dt+1] + max

a′∈A
B∗(St+1, a

′)
∣∣St=s,At=a],

(31)

where the expectation is taken with respect to the damage and
next-state transition given by the MDP.

Proof. It follows from Proposition 4.1.1 in [47, pp. 217] with
the value function being minimized, and assuming possibly
unbounded, non-negative costs C(St, At) = −I[Dt+1].

Besides providing a certificate for optimality, the Bellman
Equations for B∗(s, a) hint towards a stochastic iterative algo-
rithm to optimize (29) from data, the same way the Q-learning
algorithm is derived from the standard unconstrained value
function [47]. We will elaborate on this stochastic algorithm
next. As introduced in (29), our goal is to learn a safe policy
π with an associated optimal Barrier function B∗(s, a) that
encodes the trajectories that satisfy the constraints at all times
w.p.1. For this purpose, we first devise the following iterative
algorithm that attempts to reach a fixed point satisfying (31)

Bk+1(s, a)=E
[
I [Dt+1] + max

a′∈A
Bk(St+1, a

′)
∣∣St=s,At=a] .

(32)

Next, we appeal to the stochastic approximation machinery
[48] to drop the unknown expectations yielding a data driven
version of (32). The resulting stochastic update is given next.

Algorithm 3: barrier update

Input: B-function and (st, at, st+1, dt+1) tuple
Output: Barrier-function B

B(st, at)← B(st, at)+log(1−dt+1)+max
a′

B(st+1, a
′)

return B

The update in Algorithm 3 incorporates the information
carried in dt+1, which signals whether the constraint has
been violated or not during the transition from time t to
t+1. Moreover, the update does not only consider immediate
violations, but also the future effect of the action at that
is summarized in the second term maxa′ B(st+1, a

′). This
bootstrapping mechanism leverages on stationarity to collect
damage information from all previous state transitions, and
summarize it in B(st+1, a

′) which predicts long-run future
effect of the state-action pairs at time t+1. Thus, by repeating
the update in Algorithm 3 with new data coming from suc-
cessive system interactions, an agent can synthesize the whole
information about all past constraint violations in the barrier
function B(s, a) for unveiling the set of unsafe policies.

We turn now to the details of this iterative algorithm and to
its performance guarantees.

D. Performance analysis of Barrier-Learner
First, we consider a simple barrier learner algorithm where

one can query on any state-action pair and sample transitions
(s, a) → (s′, d) according to the MDP kernel. The barrier
learner is shown in Algorithm 4. Our analysis shows that the
expected queries/samples required until all unsafe state-action
pairs are detected is finite.

Algorithm 4: Barrier Learner Algorithm
Data: Constrained Markov Decision Process M
Result: Optimal action-value function B∗

Initialize B(0)(s, a) = 0,∀(s, a) ∈ S ×A
for t = 0, 1, · · · do

Draw (st, at) ∼ Unif({(s, a) : B(t)(s, a) ̸= −∞})
Sample transition (st, at, s

′
t, dt) according to

P (S1 = s′t, D1 = dt|S0 = st, A0 = at)
B(t+1) ← barrier update(B(t), st, at, s

′
t, dt)

end

In an MDP, an (s, a) pair is unsafe (B∗(s, a) = −∞) if
either it immediately causes damage, i.e. P (D1 = d|S0 =
s,A0 = a) > 0, or it transitions to an unsafe state, namely
P (S1 = s′|S0 = s,A0 = a) > 0 for some s′ with B∗(s′, a) =
−∞,∀a ∈ A. As a result, when an (s, a) is taken, one may
observe the damage after several steps. We let L be the lag of
the MDP, which is the maximum steps one need to wait until
observing the potential damage by taking an unsafe (s, a) pair.
The exact definition of L is given in Appendix C. Regarding
Algorithm 4, we have the following result

Theorem 7. Given an MDP, let ρ > 0 be a lower bound on all
non-zero transition probabilities: ρ ≤ P (s′|s, a) ∀(s, a, s′) :
P (s′|s, a) > 0. Let T be earliest time when Algorithm 4
detects all unsafe state-action pairs, i.e. T := min{t : B(t) =
B∗}. Then we have:

E[T] ≤ (L+ 1)
|S||A|
ρ

log (|S||A|+ 1) , (33)

where L is the lag of the MDP.

Proof Sketch. Theorem 7 is proved in three steps. We refer
the readers to Appendix C for the complete proof.

First, we reformulate the algorithm so that the sampling
process of (st, at) is independent of the current progress of
the B(t)-function: at iteration t, one samples an (st, at) pair
uniformly from the entire S×A set, then the algorithm chooses
to either accept or reject the sample depending on the value
of B(t)(st, at). This way, we turn to study the number of
acceptance by the reformulated algorithm before it detects all
unsafe state-action pairs. Secondly, we provide a modified
algorithm with more restrictions on accepting the sample
compared to the reformulated algorithm. Such restrictions
allow the modified algorithm to learn unsafe state-action pairs
in multiple stages: at each stage, the algorithm only allows to
detect a subset of unsafe state-action pairs, but the detection

AGUSTIN CASTELLANO et al.: LEARNING TO ACT SAFELY WITH LIMITED EXPOSURE AND ALMOST SURE CERTAINTY 9

process in every stage can be viewed as a safe multi-arm
bandits problem discussed in Section II.

Lastly, we derive an upper bound on the expected number
queries of the modified algorithm until successfully detecting
all unsafe state-action pairs, based on Theorem 2, which is
also an upper bound on E[T].

While this bound is admittedly loose (we use a lower-bound
ρ for the transition probabilities and a provably slower surro-
gate algorithm with more restrictions), it serves the purpose of
upholding our main claim in the paper that all unsafe policies
can be detected in finite time. The resulting simplicity of this
bound also lets us observe the fundamental factors adding to
the detection time T . Specifically, with larger spaces S and
A more exploration is needed, with a smaller ρ or longer lag
L unsafe actions take longer to be revealed as damaging, all
three factors adding to a longer detection time. A tighter bound
is presented in Appendix C when we prove Theorem 7.

This theorem has many implications. First, recalling that
the optimal barrier B∗ fully characterizes the set of feasible
policies (Remark 3), we obtain all the feasible policies in finite
time. Next, as a simple corollary, we have that the exposure
(which counts the number of unsafe interactions with the
environment) is also finite in expectation.

Corollary 2 (Expected exposure in MDPs is finite). The
expected exposure (see Remark 4) under Algorithm 4 satisfies:

E[Et] ≤ (L+ 1)
|S||A|
ρ

log (|S||A|+ 1)

Proof. Note that the exposure at any time t is at most t: Et ≤ t
(which amounts to always sampling an unsafe (s, a) pair). In
particular, at the termination time T of the algorithm we have
ET ≤ T , and therefore E [ET] ≤ E[T]. The result follows
from (33).

We now re-use Theorem 7 to derive a sample-complexity
bound, and next discuss that the dimensionality dependence is
far better than what appears in current works.

Corollary 3 (Sample-complexity bound). For any 0 < δ < 1,
with probability at least 1− δ, Algorithm 4 learns the optimal
barrier function B∗ after at most Tδ steps, with

Tδ =

(
1 + log

1

δ

)
(L+ 1)

|S||A|
ρ

log (|S||A|+ 1) .

Proof. The stopping time T defined in Theorem 7 is a sum of
geometric random variables (see Appendix C). We use the fact
that it is bounded in expectation by (33) together with a tail-
bound for sums of geometric random variables [44, Corollary
2.4] with mean 1 + log 1/δ.

Remark 5. The preceding corollary shows that the optimal
barrier function—and hence the set of feasible policies—can
be learned with O

(
log 1

δ (L+ 1) |S||A|
ρ log |S||A|

)
samples.

This is much more efficient than learning an ϵ-optimal pol-
icy [49], which requires O

(
|S||A|

(1−γ)3ϵ2 log
|S||A|
(1−γ)ϵδ

)
samples.

Learning an optimal policy requires good estimation of the
optimal value at each state, which brings the terms 1

ϵ and 1
1−γ

into play. Our framework, in contrast, cares only for detection
of unsafe state-action pairs, which can be done much faster.

Once the optimal barrier function is known, one can opti-
mize a policy over a smaller region, which corresponds to the
reduced set of safe states Ssafe and safe actions Asafe. If the
cardinality of these sets is much smaller than S and A, the
optimization process will be indeed faster. Along this line, we
now illustrate how to learn both the safe region and an optimal
policy by combining the barrier-learner with Q-learning.

E. Learning safely: Q-learning with a barrier
Now that we have introduced this data-driven strategy for

securing the environment, let us turn back our attention to the
implications of the separation principle in Theorem 5. The
separation principle (26) can be used to embed the safety
information provided by B(s, a) in the Q-function Q(s, a).
Hence, we identify that the condition Q(s, a) = −∞ is
equivalent to B(s, a) = −∞ and this propagates information
about safety from successor states. For those which do satisfy
the constraints we have B(s, a) = 0, and then Q(s, a) will
carry the information of the observed rewards. The following
update is complementary to Algorithm 4, and amounts to the
standard Q-learning algorithm for maximizing rewards at safe
pairs of states and actions.

Algorithm 5: q update

Data: Step size η, discount factor γ
Input: Functions Q, B, and (st, at, st+1, rt+1)
Output: Q-function

Q(st, at)←(1−η)Q(st, at)+η
(
rt+1+γmax

a′
Q(st+1, a

′)
)

Q(st, at)←B(st, at) +Q(st, at)

return Q

Next we specify how to use Algorithm 3 to ensure safety,
and demonstrate the sample complexity of the learning pro-
cess. After that, we combine algorithms 3 and 5 with the
goal of safely maximizing rewards. We will borrow the well-
known convergence results of Q-learning [50] together with
our separation principle in Theorem 5 to provide performance
guarantees for our novel Assured Q-learning algorithm.

The Barrier Learning Algorithm 4 stands alone as a data-
driven method to assess safety feasibility. However, our sepa-
ration principle allow us to combine it with standard existing
reward optimization algorithms in order to add safety. For
instance, by wrapping Algorithm 4 around the acclaimed Q-
learning algorithm we obtain a Generative Assured Q-learning
method to maximize the rewards over the set of safe policies,
as is shown in Algorithm 6.

As a corollary of Theorem 7, and borrowing the con-
vergence results of Q-learning from [50] we establish the
following result.

Corollary 4. With finite state space S and action space
A, bounded rewards Rt ≤ C, and diminishing step-sizes
satisfying

∑
t ηt =∞ and

∑
t η

2
t <∞, the iterates Q(t) of the

10 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. XX, XXXX 2017

Algorithm 6: Generative Assured Q-Learning
Data: Constrained Markov Decision Process M
Result: Optimal action-value functions B∗ and Q∗

Initialize
B(0)(s, a) = 0, Q(0)(s, a) = 0∀(s, a) ∈ S ×A

for t = 0, 1, · · · do
Draw (st, at) ∼ Unif({(s, a) : B(s, a) ̸= −∞})
Sample transition (st, at, s

′
t, dt) according to

P (S1 = s′t, D1 = dt|S0 = st, A0 = at)
B(t+1) ← barrier update(B(t), st, at, s

′
t, dt)

Q(t+1) ← q update(B(t), Q(t), st, at, s
′
t, rt)

end

Algorithm 6 converge almost surely to the optimal Q-function
Q⋆ satisfying:

lim
t→∞

Q(t)(s, a) = Q∗(s, a) (w.p.1) ∀(s, a) ∈ S ×A

with:

Q∗(s, a)=E
[
log (1−Dt+1)+max

a′∈A
Q∗(s′, a′)

∣∣St = s,At = a

]
.

Moreover, all unsafe state-action pairs corresponding to
Q∗(s, a) = −∞ are detected in expected finite time Ts,a such
that:

Q(t)(s, a) = −∞, ∀ t ≥ Ts,a,

and:

E [Ts,a] ≤
|S|2|A|
µ

log (|S||A|+ 1) . (34)

Proof. In order to apply the convergence results of [50] we
need iterates Q(t) to be finite for all t. But this is guaranteed
by Theorem 7 for all safe pairs (s, a) such that B∗(s, a) = 0.
Indeed, or all values such that B∗(s, a) = 0, we have B(t) = 0
for all t and the updates of the function Q(t) in Algorithm 6
amount to the asynchronous Q-learning updates with finite
rewards and diminishing step-size required by [50].

For the pairs such that B∗(s, a) = −∞, Theorem 5 implies
Q∗(s, a) = −∞ and according to Theorem 7 there must exist
a time instant Ts,a satisfying (34) such that B(t) = −∞ ∀t ≥
Ts,a. Since by construction the q update in Algorithms 6
and 3 implies that Q(t) = −∞ whenever B(t) = −∞,
then limt→∞Q(t)(s, a) = −∞ for all pairs (s, a) such that
B∗(s, a) = Q∗(s, a) = −∞.

The previous result applies to the specific case of dimin-
ishing step-sizes and immediate restarts after episodes of
length one. However, Q-learning is widely applied with longer
episodes and convergence is guaranteed provided that each
state-action pair is visited infinitely often. While one step
episodes in Algorithm 6 were used in order to simplify the
proof of Corollary 4, the numerical experiments of the next
section will demonstrate that these safe convergence results
carry out to an episodic version of Assured Q-learning with
ϵ-greedy exploratory modes.

F. Relaxed setting
We finish this section by analyzing the relaxed setting,

which corresponds to M > 0 in (15):

max
π

Eπ

[∞∑
t=0

γtRt+1

∣∣ S0 = s

]
(35a)

s.t.: Pπ

(∞∑
t=0

Dt+1 ≤M | S0 = s

)
= 1; M > 0. (35b)

This setting differs from the one analyzed so far, in the
sense that we allow at most M units of damage in any given
trajectory. To solve (35) we will resort to state-augmentation,
tracking how much damage an agent has received so far. We
define the variable to augment into the state next.

Definition 8 (Safety budget). The safety budget Kt at time t
is defined and evolves as

K0 : =M (36a)
Kt+1 = Kt −Dt (36b)

Here, Kt specifies the remaining budget at time t, that is,
how many more units of damage an agent can sustain and
still satisfy (35b). We consider a state-augmented MDP M̃
with state S̃t = (St,Kt) (notice with (36b) transitions are
still Markovian), and observe that (35) can be equivalently
formulated as:

max
π̃

Eπ̃

[∞∑
t=0

γtRt+1

∣∣ S0 = s,K0 =M

]
(37a)

s.t.: Pπ̃ (Kt+1 ≥ 0 | S0 = s,K0 =M) = 1 ∀t ≥ 0 (37b)

where the notation π̃ stresses that this is a policy on the
augmented MDP M̃. By defining a new binary damage signal
D̃t+1 on M̃ we can rewrite the constraint (37b) as follows:

Kt+1 ≥ 0 ⇐⇒ D̃t+1 := 1 {Kt+1 < 0} = 0 (38)

Now, outstandingly, the previous state-augmented problem can
be equivalently put in the following form, which fits the
flawless setting of the beginning of the section:

max
π̃

Eπ̃

[∞∑
t=0

γtRt+1

∣∣ S0 = s,K0 =M

]
(39a)

s.t.: Pπ̃
(
D̃t+1 = 0 | S0 = s,K0 =M

)
= 1 ∀t ≥ 0 (39b)

We focus then on (39), and state its main properties in the
following theorem.

Theorem 8 (Stationarity and equivalence).
1) If (39) is feasible, there exists an optimal policy that is

stationary: that is π̃∗(·|s, k).
2) In that case, π̃∗ is also optimal for (35).

Proof. To prove (1), swap (39b) for the equivalent constraint
Eπ̃
[∑∞

t=0 γ
tD̃t+1|S0 = s,K0 =M

]
≤ 0. This fits the stan-

dard formulation for CMDPs, for which the set of stationary
policies is complete [31]. Then, if the problem is feasible, there
exists at least one stationary optimal policy. To prove (2), we

AGUSTIN CASTELLANO et al.: LEARNING TO ACT SAFELY WITH LIMITED EXPOSURE AND ALMOST SURE CERTAINTY 11

refer the reader to Lemma 5 and Lemma 6 in [2], where the
equivalence between (35) and (39) is shown.

Due to Theorem 8 and the fact that (39) fits the
formulation of the beginning of the section, we can similarly
define an extended action-value function Q̃π̃(s, k, a) :=

Eπ
[∑∞

t=0

(
γtRt+1 + I

[
D̃t+1

])∣∣S0 = s,K0 = k,A0 = a
]
,

the hard-barrier B̃π̃(s, k, a), and the separation
principle still holds. Then, under this setting learning
feasibility would be akin to learning the optimal
barrier B̃∗(s, k, a) ∀(s, k, a) ∈ S × [M] × A where
[M] = {0, 1, . . . ,M}. This can still be done in expected
finite time by applying the results of Theorem 7, along with
finite exposure, defined in the extended MDP. There is a
seemingly big price to pay in this case: the dimensionality
increase of needing to learn B̃∗ for each possible budget k.
This however, can be circumvented, and we refer the reader
to [2] for details.

IV. NUMERICAL EXPERIMENTS

We now proceed to some numerical experiments that back
up the results presented throughout the paper. We first focus on
the multi-armed bandit setup and on the problem of detecting
unsafe machines under a uniform strategy. Later we tackle
learning the optimal barrier in a continuous control problem,
and how learning this barrier—i.e. feasibility—first can make
learning a task easier later.

A. Multi-armed bandits
We illustrate the performance of the Relaxed Inspector

(Algorithm 2) on a setup of K = 1000 arms, with a safety
requirement of µ = 1

10 . Each arm’s true safety parameter
is uniformly sampled between 0 and 1

5 . This means that if
ϵ ≈ 0, around half of the machines are safe and the other
half unsafe. We run the Relaxed Inspector on this setting
under a uniform strategy, for varying levels of both the failure
tolerance α and the slack ϵ. After all unsafe machines have
been detected —which happens and is certified to be done
in finite time in virtue of Theorem 3— we consider Cε,∞,
the final conservation ratio and the normalized final exposure
1
KE∞ . Figure 1 shows both metrics for varying α and ϵ. The
curves in these figures show the average value obtained after
16 independent runs. Shaded intervals correspond to ±σ/

√
16,

with σ being the sample deviation.
These figures certify the intrinsic trade-off in our method-

ology: if a large value of α is used, one can obtain low
exposure Et (less pulls of unsafe machines), but at the cost
of discarding more safe machines (smaller conservation ratio
Cε,t). For further examples we refer the reader to [1].

B. MDPs
We consider a robot navigating in 2d-space with constant

velocity module v = 0.5m/s. The robot can change its
angle via first-order tracking dynamics, and the system evolves
according to the following equations:

ẋ = v. cos θ
ẏ = v. sin θ

θ̇ = −(a− θ)
(40)

C
ε

,

∞

(a)

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0

500

1000

1500

2000

2500

N
o
rm

a
li
z
e
d
 E

x
p
o
s
u
re

(b)

Fig. 1: Top: Final safety ratio Cε,∞ for µ = 0.1 as a function
of ϵ, for varying α. More safe machines are kept when using
small values of ϵ and α, but this in turn implies longer training
time. Bottom: Normalized final exposure for µ = 0.1 as a
function of ϵ, for varying tolerance level α. Larger values of α
and ϵ achieve lower handicap (which implies faster detection).

where x and y are the horizontal positions, θ is the angle with
respect to the horizontal, s = [x, y, θ] is the state of the system
and the action a is an angle setpoint.
The (x, y)-space is a 5 × 5 square with an obstacle in the
middle, as depicted in the top-left of Fig. 2. Bumping into
either the obstacle or any of the outer walls is unsafe, and
results in damage Dt+1 = 1. At each time step, the agent
decides an action a ∈ [θ0 − π, θ0 + π] where θ0 is the angle
at the beginning of the time interval. This action is input to
the system (40) for ∆T = 0.5s. We uniformly discretize
each component of the state-action space into Nx = Ny =
21, Nθ = Na = 8 values respectively.

1) Learning the barrier: We learn the barrier running
episodes in which the initial state is picked uniformly at
random, and the episode finishes either after 100 timesteps or
if the agent receives damage (bumps into the object or goes
out of bounds). At each step, the agent takes a random action
over the presumed safe ones: those for which B(s, a) = 0.
Figure 2 shows the learned barrier after 2× 106 episodes.

2) Knowing the barrier accelerates learning: In this task-
oriented version of the previous environment, the goal is to
reach a region of the space, a circle of radius 0.5 centered at
coordinates (4.5, 0.5). Each episode starts in position (0.5, 0.5)
with heading θ = 0. At each time step the reward Rt is minus
the distance to the center of the goal. Bumping into the wall
ends the episode with additional −100 reward. Reaching the
goal ends the episode with additional +100 reward

We compare a standard Q-learning agent versus its assured
counterpart: an agent that has previously learned the barrier
of Fig. 2, and that only takes (presumably) safe actions. At
each step, the standard agent follows an ϵ-greedy policy, while
the assured agent follows a safe ϵ-greedy policy, only taking
actions over the set of presumed-to-be safe actions (B(s, a) =
0). At each step t we observe a tuple (S,A, S′, R,D) and
update the Q−function as Qt+1(S,A) = (1 − α)Qt(S,A) +
α (R+ γmaxa′ Qt(S

′, A′)). Both agents use ϵ = 0.1, α =
0.1, γ = 0.99. Fig. 3 shows 100 greedy trajectories obtained
with each agent during different stages of training. Assured Q-
learning (on the left) rapidly learns to reach the goal, always
succeeding. On the other hand, some trajectories of standard
Q-learning (on the right) fail against the wall. The assured

12 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. XX, XXXX 2017

Fig. 2: Top-left: the environment. An agent navigates through
it, and gets damage if it collides onto the gray obstacle or
the outer walls. Top-right: learning curve for the unsafe states
detected by the barrier learner (those for which B(s, a) =
−∞ ∀a). Bottom: visualization of the learned barrier after
two million episodes. The left figure shows the barrier when
the agent’s angle is θ = −π (heading left); the right figure
shows the barrier for an agent facing right.

agent is conservative, leaving a bigger gap with the obstacle.
Some quantitative metrics for these examples are shown in

Fig. 4, that show the total reward and steps taken to reach
the goal over these trajectories. Each column shows statistics
using 100 greedy trajectories as sample points. Each box
spans the first (q1) and third (q3) quartile, with the median
shown as a solid line. Whiskers above and below each box
correspond to a confidence interval depicting the inter-quartile
length 1.5 × (q3 − q1), with outliers as black circles. Green
triangles represent the mean values. The value N indicates
how many trajectories (out of 100) reach the goal safely.

Key takeaways from this experiment are that: i) the assured
agent always reaches the goal safely, while the standard one
sometimes fails; ii) when both reach the goal, the assured agent
is typically faster; iii) the assured agent is more conservative,
staying further away from the obstacles.

V. CONCLUSIONS

In this work we addressed the problem of learning to
act safely in unknown environments. We made the case that
learning safe policies is fundamentally different from learning
optimal policies, and that it can be done separately and in
a more efficient manner. By incorporating in the model a
binary damage signal that indicates constraint violations, we
showed that identification of all unsafe actions (MABs) and
state-action pairs (MDPs) is achieved in expected finite time
with probability one guarantees. These results imply that the
learner is not indefinitely exposed to damage, and could aid
in the design of new algorithms that rapidly learn to act safely
while jointly optimizing returns. Our experimental results for
MDPs suggest that our algorithm obtains good performance

Fig. 3: Samples of greedy trajectories at different stages of
training. The first column corresponds to the assured agent,
the second one to the standard Q-learning agent.The assured
agent always reaches the goal while the standard agent still
fails in some trajectories. Notice the conservative nature of
the assured agent, who leaves a bigger margin between itself
and the obstacle.

in a continuous-state dynamical system, making it potentially
useful for control applications.

APPENDIX

A. Proof of Theorem 2

We will prove the following two inequalities:

E[T] ≤ 1

λµlow

M−1∑
i=0

K − i
M − i

≤ M + (K −M) log(M + 1)

λµlow
.

Proof. Each iteration of Algorithm 1 can be view as doing
a Bernoulli trial with success rate being the probability of
detecting an unsafe machine. This probability evolves over
time, and depends on the failure probability of each arm, and
on the number of unsafe machines in the candidate set.

We can decompose the time T as
T = T1 + (T2 − T1) + (T3 − T2) + . . .+ T − TM−1, where
Ti is the total time taken to detect the i-th machine. Then

E[T] = E[T1] + E[T2 − T1] + . . .+ E[T − TM−1] (41)

We first bound E[T1]. When all M malfunctioning machines
are in play, T1 is just the time taken to detect one of them.

AGUSTIN CASTELLANO et al.: LEARNING TO ACT SAFELY WITH LIMITED EXPOSURE AND ALMOST SURE CERTAINTY 13

10000 20000 50000
Episodes trained

40

60

80

100

120

 N = 100 N = 100 N = 100

 N = 95
 N = 49

 N = 49

Steps to goal
assured
standard

10000 20000 50000
Episodes trained

300

250

200

150

100

50

0

Rewards

assured
standard

Fig. 4: Left: steps taken to reach the goal for both agents
at different stages of training. The value N shows how many
trajectories (out of 100) made it to the goal. The assured agent
always reaches the goal (N = 100), usually in fewer steps;
the standard agent reaches the goal half of the time (N = 49)
after 20000 and 50000 episodes. Right: total reward along
the trajectories. The assured agent’s rewards are more tightly
concentrated, and generally higher.

The probability of detecting the first machine is then

p1:= P(detect first machine) = P(get damage)

=

M∑
a=1

P(get dmg|pull a)P(pull a) ≥ λ

K

M∑
a=1

µa≥
λMµlow

K

where in the first inequality we used the fact that the strategy
ψ is λ-soft, and in the second one the lower bound on µa.
Since T1 ∼ Geom(p1), we thus have:

E[T1] =
1

p1
≤ 1

λµlow
· K
M

We now proceed to bound E[T2−T1]. After detecting the first
machine, now p2 is the probability of observing damage when
dealing with M − 1 malfunctioning machines over a total of
K − 1 machines. Now T2 − T1 ∼ Geom(p2) and we get:

E[T2 − T1] ≤
1

λµlow
· K − 1

M − 1

Proceeding similarly for the remaining stages, we end up
bounding E[T] in (41) as:

E[T] ≤ 1

λµlow

M−1∑
i=0

K − i
M − i

What remains to be shown is a further upper bound on this
right hand side. To that end, we manipulate the sum:

M−1∑
i=0

K − i
M − i

=M + (K −M)

M−1∑
i=0

1

M − i

=M + (K −M)

M∑
i=1

1

i
≤M + (K −M) log(M + 1)

where on the last inequality we used the usual bound on the
harmonic series

∑M
i=1

1
i < log(M + 1).

B. Proof of Theorem 4
By lemma 3, we have

E[ET] =
M∑
a=1

E[Ta] ≤M
(
1 +

log(1/α)

kl(µ, µ− ϵ)

)
.

Then by Wald’s identity [51], we have

E[ET] = E

[
T∑
t=1

E[1{µAt
> µ}]

]
≥ E

[
T

λ

K −M + 1

]
,

where the second inequality is due to the fact that before T ,
the probability of sampling an unsafe machine with a λ-soft
strategy is at least λ/(K−M+1). Recalling the upper bound
for E[ET] in Theorem 3, one obtains

E[T] ≤ M(K −M + 1)

λ

(
1 +

log(1/α)

kl(µ, µ− ϵ)

)
.

C. Proof of Theorem 7
We prove Theorem 7 in three steps:
1) Reformulation of Algorithm 4: We reformulate Algorithm

4 as in Algorithm 7.

Algorithm 7: Barrier Learner Algorithm Reformulated
Data: Constrained Markov Decision Process M
Initialize B(0)(s, a) = 0,∀(s, a) ∈ S×A
for τ = 0, 1, · · · do

Draw (sτ , aτ) ∼ Unif(S×A)
Sample transition (sτ , aτ , s

′
τ , dτ) according to

P (S1 = s′τ , D1 = dτ |S0 = sτ , A0 = aτ)
if B(τ)(sτ , aτ) ̸= −∞ then

B(τ+1) ←
barrier update(B(τ), sτ , aτ , s

′
τ , dτ)

else
B(τ+1) ← B(τ)

end
end

In the reformulated Algorithm 7, the sampling process is
independent of B-function: At each iteration τ , an (sτ , aτ)
pair is drawn uniformly from S ×A and then a transition
(sτ , aτ , s

′
τ , dτ) is sampled according to the MDP, and the

algorithm decides whether to accept such a sample depending
on the value of B(sτ , aτ). When we restrict ourselves to the
trajectory of samples that are accepted, i.e.

{(sτ , aτ , s′τ , dτ) : B(τ)(sτ , aτ) ̸= −∞, τ = 0, 1, · · · } ,

this trajectory is also a sampled trajectory of original Algo-
rithm 4. More importantly, for such a trajectory, the probability
it appears in original Algorithm 4 is the same as the probability
it appears as the accepted trajectory in Algorithm 7. With that,
we define

Tr := min{τ : B(τ) = B∗} , (42)

i.e. the earliest time when Algorithm 7 detects all unsafe state-
action pairs, then we have

E[T] = E

[
Tr∑
τ=1

1{B(τ)(sτ , aτ) ̸= −∞}

]
, (43)

where T is the earliest time when Algorithm 4 detects all un-
safe state-action pairs, as defined in Theorem 7. Expectations
are taken with respect to the respective sampling processes of
Algorithm 4 and 7, which are different. With (43), it suffices
to analyze the expected detection time of Algorithm 7.

14 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. XX, XXXX 2017

2) Construction of modified algorithm: As discussed in Sec-
tion III-D, an (s, a) pair is unsafe if either it causes damage
immediately or it transitions to an unsafe state with non-
zero probability. If only the latter happens for such an unsafe
(s, a), then to be able to declare it unsafe, one must have
already declared one of its succeeding states unsafe. To make
such intuition precise, we recursively define disjoint subsets
Sl, l = 1, 2, · · · of the state space S as follow,

S1 := {s ∈ S : Pπ (D1 = 1|S0 = s) > 0,∀π} ,

Sl :=

{
S ′l , S ′l ̸= ∅
S \

⋃
k<l Sk, S ′l = ∅

, (44)

where

S ′l =

{
s ∈ S \

⋃
k<l

Sk : Pπ

(
S1 ∈

⋃
k<l

Sk|S0 = s

)
> 0,∀π

}
Observe that for any finite MDP, its lag L := max{l >

0 : Sl+1 ̸= ∅} is finite. Following the definition (44),
{Sl, l = 1, · · · , L, L + 1} is a partition of S. Any state
s0 ∈

⋃L
l=1 Sl is unsafe because starting from s0 and under

any policy π, the MDP eventually reaches a state in S1 with
non-zero probability, then causes damage. Furthermore, any
state s0 ∈ SL+1 := S\

⋃L
l=1 Sl is safe since S ′L+1 = ∅ implies

that there exists a0 ∈ A such that P (S1 ∈
⋃
k<L+1 Sk|S0 =

s0, A0 = a0) = 0, i.e. taking action a0 keeps the MDP away
from the unsafe states in

⋃L
l=1 Sl. However, we note that a

safe state can have unsafe actions and they can be detected by
the Barrier Learner Algorithm. More importantly, the unsafe
state sets Sl, l = 1, 2, · · · , L satisfies that if all states in⋃
k<l Sk has been declared unsafe, any state-action pair in
{(s, a) : s ∈ Sl, a ∈ A}, when sampled, can be declared
unsafe with non-zero probability. Base on this property, we
construct an modified barrier learning algorithm using the prior
information on Sl, l = 1, 2, · · · , L. The modified algorithm is
described in Algorithm 8.

The modified algorithm is similar to Algorithm 7 but it
learns Sl, l = 1, 2, · · · , L in order: At the beginning (l = 1),
it only declares (s, a) pairs associated with S1 unsafe until
all states in S1 are declared unsafe, after which l increases
to 2. Now the algorithm only declares (s, a) pairs associated
with S2 unsafe. Finally after all states in

⋃L
l=1 Sl are declared

unsafe (l = L + 1), the algorithm starts to learn the unsafe
transitions for safe states in SL+1. Similarly, we define

T̂r := min{τ : B̂(τ) = B∗} , (45)

i.e. the earliest time when Algorithm 8 detects all unsafe state-
action pairs. Since the modified algorithm is more restrictive
on declaring unsafe state-action pair, the expected detection
time of the modified algorithm is no less than that of Algorithm
7, as stated in the following claim.

Claim 1. Given an MDP, let Tr and T̂r be the earliest
times when Algorithm 7 and Algorithm 8, detect all unsafe
state-action pairs in this MDP, respectively, as defined in (42)
and (45). Then, E

[∑T̂r

τ=1 1{B̂(τ)(sτ , aτ) ̸= −∞}
]

is lower-

bounded by E
[∑Tr

τ=1 1{B(τ)(sτ , aτ) ̸= −∞}
]

,
where expectations are w.r.t. {(sτ , aτ , s′τ , dτ), τ = 0, 1, · · · }.

Algorithm 8: Modified Barrier Learner Algorithm
with Prior Information on Sl, l = 1, 2, · · · , L, L+ 1

Data: Constrained Markov Decision Process M,
Sl, l = 1, 2, · · · , L, L+ 1 defined for M

Initialize B̂(0)(s, a) = 0,∀(s, a) ∈ S×A
Initialize l = 1
for τ = 0, 1, · · · do

Draw (sτ , aτ) ∼ Unif(S×A)
Sample transition (sτ , aτ , s

′
τ , dτ) according to

P (S1 = s′τ , D1 = dτ |S0 = sτ , A0 = aτ)
if B̂(τ)(sτ , aτ) ̸= −∞ and sτ ∈ Sl then

B̂(τ+1) ←
barrier update(B̂(τ), sτ , aτ , s

′
τ , dτ)

else
B̂(τ+1) ← B̂(τ)

end
if B̂τ+1(s, a) = −∞,∀s ∈ Sl, a ∈ A then

l← l + 1
end

end

Proof. Condition on a fixed sample trajectory T :=
{(sτ , aτ , s′τ , dτ)}∞τ=0 , the functions B(τ) and B̂(τ) are de-
terministic. We have

B(τ)(s, a)|T ≤ B̂(τ)(s, a)|T ,∀τ≥0,∀(s, a)∈S×A , (46)

proved by induction: we have

B(0)(s, a)|T ≤ B̂(0)(s, a)|T ,∀(s, a) ∈ S×A ,

at initialization. Suppose that (46) holds at time τ = t. If
(st, at, s

′
t, dt) is accepted by both algorithms, or rejected by

both algorithms, we have

B(t+1)(s, a)|T ≤ B̂(t+1)(s, a)|T ,∀(s, a) ∈ S×A . (47)

If (st, at, s′t, dt) is rejected by Algorithm 7 and accepted by
Algorithm 8, then we have B(t)(st, at) = −∞, B̂(t)(st, at) =
0 . (47) still holds, since only B̂(t+1)(st, at) is updated to
either 0 or −∞. If (st, at, s

′
t, dt) is accepted by Algorithm

7 and rejected by Algorithm 8, then we have

B(t)(st, at) = B̂(t)(st, at) = 0 .

Inequality (47) still holds, since only B(t+1)(st, at) is updated
to either 0 or −∞. Now from (46), we immediately know that
condition on the fixed sample trajectory T ,

1{B(sτ , aτ) ̸= −∞} ≤ 1{B̂(sτ , aτ) ̸= −∞},∀τ = 0, 1, · · ·

Notice that Tr (T̂r) is the minimum t such that B(t) (B̂(t))
becomes exactly the same as B∗. Then Tr|T ≤ T̂r|T .
Therefore one have, by law of total expectation,

E

[
Tr∑
τ=0

1{B(sτ , aτ) ̸= −∞}

]

≤ E

E
 T̂r∑
τ=0

1{B̂(sτ , aτ) ̸= −∞}

∣∣∣∣∣∣ T

AGUSTIN CASTELLANO et al.: LEARNING TO ACT SAFELY WITH LIMITED EXPOSURE AND ALMOST SURE CERTAINTY 15

= E

 T̂r∑
τ=0

1{B̂(sτ , aτ) ̸= −∞}

3) Expected detection time of modified algorithm: Lastly, we

prove the following Theorem regarding the expected detection
time of the modified algorithm.

Theorem 9. Given an MDP with Sl, l = 1, 2, · · · , L, L + 1
defined as in (44). Assume that exists ρ > 0 such that the
transition probability P (S1 = s′|S0 = s,A0 = a), is either
zero or lower bounded by ρ, for all s, s′ ∈ S, a ∈ A. Let T̂r be
earliest time when Algorithm 8 detects all unsafe state-action
pairs as defined in (45), then we have

E

 T̂r∑
τ=1

1{B̂(τ)(sτ , aτ) ̸= −∞}

 ≤ |S||A|
ρ

L+1∑
l=1

|Sl||A|∑
k=1

1

k

 .

Proof. Let T̂l, l = 1, · · · , L+1 denote the earliest time when
all unsafe state-action pairs associated with Sl are detected by
Algorithm 8, and we let T̂0 = 0. Then clearly

T̂l−1 < T̂l, l = 1, · · · , L+ 1 , T̂L+1 = T̂r ,

and ∆l :=
∑T̂l−1

t=T̂l−1
1{B̂(t)(st, at) ̸= −∞} is the number of

accepted samples by Algorithm 8 between T̂l−1 and T̂l.
Notice that we can view the barrier learning pro-

cess between T̂l−1 and T̂l as detecting unsafe ma-
chines in the safe multi-arm bandits problem discussed
in Section II: At time T̂l−1, there are in total Kl :=∣∣∣{(s, a) : s ∈ ⋃L+1

k=l Sk, a ∈ A
}∣∣∣ machines, and the number of

unsafe machines is

Ml := |{(s, a) : s ∈ Sl, a ∈ A, B∗(s, a) = −∞}| .

We have Kl ≤ |S||A| , Ml ≤ |Sl||A| . Furthermore, condition
on such an unsafe machine is pulled, i.e. an unsafe (s, a) in
Sl is accepted by Algorithm 8, the probability of declaring it
unsafe is at least ρ. Because the (s, a) pair either transitions to
some s ∈

⋃l−1
k=1 Sk that has been declared unsafe or directly

incurs damage with non-zero probability, and that probability
is lower bounded by ρ according to our assumption.

The acceptance of sample (sτ , aτ , s
′
τ , dτ) is equivalent to

pulling a uniformly randomly drawn arm out of arms that
have not been declared unsafe. Theorem 2 suggests that the
expected number of such ”pulling” is upper bounded as

E[∆l] ≤
Kl

ρ

(
Ml∑
k=1

1

k

)
≤ |S||A|

ρ

|Sl||A|∑
k=1

1

k

 .

Finally, we have

E

 T̂r∑
t=0

1{B̂(t)(st, at) ̸= −∞}

= E

[
L+1∑
l=1

∆l

]
≤ |S||A|

ρ

L+1∑
l=1

|Sl||A|∑
k=1

1

k

 .

Proof of Theorem 7. Given any MDP, we have |Sl| ≤
|S|,∀l = 0, 1, · · · , L+ 1, then we have

E[T] ≤E

 T̂r∑
τ=1

1{B̂(τ)(sτ , aτ) ̸= −∞}

≤ |S||A|

ρ

L+1∑
l=1

|Sl||A|∑
k=1

1

k

 ≤ |S||A|(L+ 1)

µ

|S||A|∑
k=1

1

k

 ,

where the first equality is from (43) and Claim 1. The
result follows by upper bounding the summation with the log
inequality

∑n
k=1

1
k ≤ log(n+ 1).

REFERENCES

[1] A. Castellano, J. Bazerque, and E. Mallada, “Learning to be safe, in
finite time,” in 2021 American Control Conference (ACC), IEEE, 2021.

[2] A. Castellano, H. Min, J. Bazerque, and E. Mallada, “Reinforcement
learning with almost sure constraints,” 2021.

[3] W. Rawat and Z. Wang, “Deep convolutional neural networks for image
classification: A comprehensive review,” Neural computation, vol. 29,
no. 9, pp. 2352–2449, 2017.

[4] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, et al., “Deep neural
networks for acoustic modeling in speech recognition: The shared views
of four research groups,” IEEE Signal processing magazine, vol. 29,
no. 6, pp. 82–97, 2012.

[5] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, et al., “Mastering the game of go with deep neural networks
and tree search,” nature, vol. 529, no. 7587, p. 484, 2016.

[6] W. M. Haddad and V. Chellaboina, Nonlinear Dynamical Systems and
Control: A Lyapunov-Based Approach. Princeton University Press, 2011.

[7] K. Zhou and J. C. Doyle, Essentials of Robust Control, vol. 104. Prentice
hall Upper Saddle River, NJ, 1998.

[8] F. Berkenkamp, M. Turchetta, A. P. Schoellig, and A. Krause, “Safe
Model-based Reinforcement Learning with Stability Guarantees,” arXiv,
2017.

[9] T. J. Perkins and A. G. Barto, “Lyapunov design for safe reinforcement
learning,” J. of Mach. Learn. Res., vol. 3, no. Dec, pp. 803—832, 2002.

[10] F. Berkenkamp and A. P. Schoellig, “Safe and robust learning control
with Gaussian processes,” in 2015 European Control Conference (ECC),
pp. 2496—2501, 2015.

[11] Z. Marvi and B. Kiumarsi, “Safe reinforcement learning: A control
barrier function optimization approach,” International Journal of Robust
and Nonlinear Control, vol. 31, no. 6, pp. 1923–1940, 2021.

[12] J. Garcia and F. Fernandez, “A Comprehensive Survey on Safe Rein-
forcement Learning,” Journal of Machine Learning Research, vol. 16,
no. 1, pp. 1437—1480, 2015.

[13] G. Dalal, K. Dvijotham, M. Vecerik, T. Hester, C. Paduraru, and Y. Tassa,
“Safe Exploration in Continuous Action Spaces,” arXiv, 2018.

[14] A. Wachi, Y. Sui, Y. Yue, and M. Ono, “Safe Exploration and Optimiza-
tion of Constrained MDPs Using Gaussian Processes,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 32, 2018.

[15] T. Xu, Y. Liang, and G. Lan, “A Primal Approach to Constrained
Policy Optimization: Global Optimality and Finite-Time Analysis,”
arXiv, 2020.

[16] S. Paternain, M. Calvo-Fullana, L. F. O. Chamon, and A. Ribeiro, “Safe
Policies for Reinforcement Learning via Primal-Dual Methods,” arxiv,
11 2019.

[17] D. Ding, X. Wei, Z. Yang, Z. Wang, and M. R. Jovanović, “Provably
Efficient Safe Exploration via Primal-Dual Policy Optimization,” arXiv,
2020.

[18] A. Wachi and Y. Sui, “Safe Reinforcement Learning in Constrained
Markov Decision Processes,” arXiv, 2020.

[19] A. Hasanzade Zonuzy, A. Bura, D. Kalathil, and S. Shakkottai, “Learn-
ing with Safety Constraints: Sample Complexity of Reinforcement
Learning for Constrained MDPs,” arXiv, 2020.

[20] T. Lattimore and C. Szepesvári, Bandit algorithms. Cambridge Univer-
sity Press, 2020.

[21] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

16 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. XX, XXXX 2017

[22] S. Amani, M. Alizadeh, and C. Thrampoulidis, “Linear stochastic ban-
dits under safety constraints,” Advances in neural information processing
Ssystems, vol. 32, 2019.

[23] A. Moradipari, C. Thrampoulidis, and M. Alizadeh, “Stage-wise con-
servative linear bandits,” Advances in neural information processing
systems, vol. 33, pp. 11191–11201, 2020.

[24] S. Amani, M. Alizadeh, and C. Thrampoulidis, “Regret bound for safe
gaussian process bandit optimization,” in Learning for Dynamics and
Control, pp. 158–159, PMLR, 2020.

[25] P. Auer, “Using confidence bounds for exploitation-exploration trade-
offs,” J. of Machine Learning Res., vol. 3, no. Nov, pp. 397–422, 2002.

[26] A. Pacchiano, M. Ghavamzadeh, P. Bartlett, and H. Jiang, “Stochastic
bandits with linear constraints,” in International Conference on Artificial
Intelligence and Statistics, pp. 2827–2835, PMLR, 2021.

[27] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and
P. Tabuada, “Control barrier functions: Theory and applications,” in 2019
18th European control conference (ECC), pp. 3420–3431, IEEE, 2019.

[28] A. Taylor, A. Singletary, Y. Yue, and A. Ames, “Learning for safety-
critical control with control barrier functions,” in Learning for Dynamics
and Control, pp. 708–717, PMLR, 2020.

[29] D. M. Stipanović, I. Hwang, and C. J. Tomlin, “Computation of an over-
approximation of the backward reachable set using subsystem level set
functions,” in European Control Conference (ECC), pp. 300–305, 2003.

[30] A. Chakrabarty, A. Raghunathan, S. Di Cairano, and C. Danielson,
“Data-driven estimation of backward reachable and invariant sets for
unmodeled systems via active learning,” in 2018 IEEE Conference on
Decision and Control (CDC), pp. 372–377, 2018.

[31] E. Altman, Constrained Markov Decision Process, vol. 7. CRC Press,
1998.

[32] P. L. A., “Policy gradients for cvar-constrained mdps,” 2014.
[33] E. Altman, “Constrained markov decision processes with total cost

criteria: Lagrangian approach and dual linear program,” Mathematical
methods of operations research, vol. 48, no. 3, pp. 387–417, 1998.

[34] S. Paternain, M. Calvo-Fullana, L. F. O. Chamon, and A. Ribeiro, “Safe
Policies for Reinforcement Learning via Primal-Dual Methods,” arxiv,
2019.

[35] D. Ding, K. Zhang, T. Basar, and M. Jovanovic, “Natural policy
gradient primal-dual method for constrained markov decision processes,”
Advances in Neural Information Processing Systems, vol. 33, 2020.

[36] Y. Chen and M. Wang, “Stochastic primal-dual methods and sample
complexity of reinforcement learning,” arXiv, 2016.

[37] H. Wei, X. Liu, and L. Ying, “Triple-q: A model-free algorithm for con-
strained reinforcement learning with sublinear regret and zero constraint
violation,” in Proceedings of The 25th International Conference on
Artificial Intelligence and Statistics (G. Camps-Valls, F. J. R. Ruiz, and
I. Valera, eds.), vol. 151 of Proceedings of Machine Learning Research,
pp. 3274–3307, PMLR, 28–30 Mar 2022.

[38] M. Hasanbeig, A. Abate, and D. Kroening, “Logically-constrained
reinforcement learning,” arXiv, 2018.

[39] M. Hasanbeig, A. Abate, and D. Kroening, “Certified reinforcement
learning with logic guidance,” arXiv preprint arXiv:1902.00778, 2019.

[40] M. Hasanbeig, Y. Kantaros, A. Abate, D. Kroening, G. J. Pappas, and
I. Lee, “Reinforcement learning for temporal logic control synthesis with
probabilistic satisfaction guarantees,” in 2019 IEEE 58th Conference on
Decision and Control (CDC), pp. 5338–5343, IEEE, 2019.

[41] A. Lavaei, F. Somenzi, S. Soudjani, A. Trivedi, and M. Zamani,
“Formal controller synthesis for continuous-space mdps via model-free
reinforcement learning,” in ACM/IEEE 11th International Conference
on Cyber-Physical Systems (ICCPS), pp. 98–107, 2020.

[42] A. Wald, “Sequential Tests of Statistical Hypotheses,” The Annals of
Mathematical Statistics, vol. 2, no. 16, pp. 117—186, 1945.

[43] T. Lai and H. Robbins, “Asymptotically efficient adaptive allocation
rules,” Advances in Applied Mathematics, vol. 6, no. 1, pp. 4–22, 1985.

[44] S. Janson, “Tail bounds for sums of geometric and exponential vari-
ables,” Statistics & Probability Letters, vol. 135, pp. 1–6, 2018.

[45] A. Castellano, H. Min, J. Bazerque, and E. Mallada, “Learning to act
safely with limited exposure and almost sure certainty,” 2021.

[46] G. B. Folland, Real analysis: modern techniques and their applications,
vol. 40. John Wiley & Sons, 1999.

[47] D. P. Bertsekas et al., Dynamic programming and optimal control: Vol.
II. Athena scientific, Belmont, 2012.

[48] H. Robbins and S. Monro, “A Stochastic Approximation Method,” The
Annals of Mathematical Statistics, vol. 22, no. 3, pp. 400 – 407, 1951.

[49] G. Li, Y. Wei, Y. Chi, Y. Gu, and Y. Chen, “Breaking the sample size
barrier in model-based reinforcement learning with a generative model,”
Adv. in neural info. proc. systems, vol. 33, pp. 12861–12872, 2020.

[50] J. N. Tsitsiklis, “Asynchronous stochastic approximation and q-
learning,” Machine learning, vol. 16, no. 3, pp. 185–202, 1994.

[51] A. Wald, “On Cumulative Sums of Random Variables,” The Annals of
Mathematical Statistics, vol. 15, no. 3, pp. 283 – 296, 1944.

Agustin Castellano is pursuing a Ph.D. at the
Department of Electrical Engineering at Johns
Hopkins University. He received the M.Sc. and
his degree in Electrical Engineering from Uni-
versidad de la República, Uruguay in 2021 and
2017 respectively. For his M.Sc. dissertation he
was awarded the first prize given by the National
Academy of Engineers. His current research
interests include Reinforcement Learning theory
and algorithms, with applications to power sys-
tem optimization.

Hancheng Min is currently working toward the
Ph.D. degree at the Department of Electrical and
Computer Engineering, Johns Hopkins Univer-
sity. He received the B.Eng. degree in Electrical
Engineering and Automation from Tongji Univer-
sity in 2016, and the M.S. degree in Systems
Engineering from University of Pennsylvania in
2018. His research interests include analysis
and control of large-scale networks, reinforce-
ment learning and deep learning theory.

Juan Andrés Bazerque (S’06-M’13) received
the B.Sc. degree in electrical engineering from
Universidad de la Republica (UdelaR), Monte-
video, Uruguay, in 2003, ´ and the M.Sc. and
Ph.D. degrees from the Department of Electrical
and Computer Engineering, University of Min-
nesota (UofM), Minneapolis, in 2010 and 2013
respectively. After his PhD studies he entered
the Department of Electrical Engineering at Ude-
laR as an Assistant Professor. In 2022 he moved
back to the US where he joined the Department

of Electrical and Computer Engineering at the University of Pittsburgh.
His current research interests include stochastic optimization and net-
worked systems, focusing on reinforcement learning, graph signal pro-
cessing, and power systems optimization and control. Dr. Bazerque is
the recipient of the UofM’s Master Thesis Award 2009-2010, and co-
recipient of the best paper award at the 2nd International Conference on
Cognitive Radio Oriented Wireless Networks and Communication 2007.

Enrique Mallada (S’09-M’13-SM’) is an Asso-
ciate Professor of Electrical and Computer Engi-
neering at Johns Hopkins University since 2022.
Prior to joining Hopkins in 2016, he was a Post-
Doctoral Fellow in the Center for the Mathemat-
ics of Information at Caltech from 2014 to 2016.
He received his Ingeniero en Telecomunica-
ciones degree from Universidad ORT, Uruguay,
in 2005 and his Ph.D. degree in Electrical and
Computer Engineering with a minor in Applied
Mathematics from Cornell University in 2014. Dr.

Mallada was awarded the Johns Hopkins Alumni Association Teaching
Award in 2021, the Catalyst and Discovery Awards in 2020 and 2021,
respectively, from Johns Hopkins University, the NSF CAREER award
in 2018, the ECE Director’s Ph.D. Thesis Research Award for his
dissertation in 2014, the Center for the Mathematics of Information (CMI)
Fellowship from Caltech in 2014, and the Cornell University Jacobs
Fellowship in 2011. His research interests lie in the areas of control,
dynamical systems, and optimization, with applications to engineering
networks.

	Introduction
	Contributions
	Related work
	Outline of the paper

	Multi-armed bandits
	Flawless setting (=0)
	Relaxed setting (>0)

	Assured Reinforcement Learning
	Problem formulation and outline
	Value function decomposition
	Barrier learning
	Performance analysis of Barrier-Learner
	Learning safely: Q-learning with a barrier
	Relaxed setting

	Numerical Experiments
	Multi-armed bandits
	MDPs
	Learning the barrier
	Knowing the barrier accelerates learning

	Conclusions
	Appendix
	Proof of Theorem 2
	Proof of Theorem 4
	Proof of Theorem 7
	Reformulation of Algorithm 4
	Construction of modified algorithm
	Expected detection time of modified algorithm

	References
	Biographies
	Agustin Castellano
	Hancheng Min
	Juan Andrés Bazerque
	Enrique Mallada

